
Statistical Learning for Humanoid Robots

Sethu Vijayakumar (sethu@usc.edu) and Aaron D’Souza
(adsouza@usc.edu)
Computer Science & Neuroscience and Kawato Dynamic Brain Project
University of Southern California, Los Angeles, CA 90089-2520, USA

Tomohiro Shibata (tom@erato.atr.co.jp)
Kawato Dynamic Brain Project, ERATO
Japan Science & Technology Corp., Kyoto 619-0288, Japan

Jörg Conradt (conradt@ini.phys.ethz.ch)
Univeristy/ETH Zurich, Winterthurerstr. 190, CH-8057 Zurich

Stefan Schaal (sschaal@usc.edu)
Computer Science & Neuroscience and Kawato Dynamic Brain Project
University of Southern California, Los Angeles, CA 90089-2520, USA

Abstract. The complexity of the kinematic and dynamic structure of humanoid
robots make conventional analytical approaches to control increasingly unsuitable
for such systems. Learning techniques offer a possible way to aid controller design if
insufficient analytical knowledge is available, and learning approaches seem manda-
tory when humanoid systems are supposed to become completely autonomous.
While recent research in neural networks and statistical learning has focused mostly
on learning from finite data sets without stringent constraints on computational
efficiency, learning for humanoid robots requires a different setting, characterized
by the need for real-time learning performance from an essentially infinite stream
of incrementally arriving data. This paper demonstrates how even high-dimensional
learning problems of this kind can successfully be dealt with by techniques from non-
parametric regression and locally weighted learning. As an example, we describe the
application of one of the most advanced of such algorithms, Locally Weighted Pro-
jection Regression (LWPR), to the on-line learning of three problems in humanoid
motor control: the learning of inverse dynamics models for model-based control,
the learning of inverse kinematics of redundant manipulators, and the learning of
oculomotor reflexes. All these examples demonstrate fast, i.e., within seconds or
minutes, learning convergence with highly accurate final peformance. We conclude
that real-time learning for complex motor system like humanoid robots is possible
with appropriately tailored algorithms, such that increasingly autonomous robots
with massive learning abilities should be achievable in the near future.

1. Introduction

The necessity for adaptive control is becoming more apparent as the
scale of control systems gets increasingly more complex, for instance,
as experienced in the fields of advanced robotics, factory automation,
and autonomous vehicle control. Humanoid robots, the focus of this
paper, are a typical example. Humanoid robots are high dimensional

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

AutRob.tex; 12/09/2001; 19:25; p.1

2 Vijayakumar et. al.

movement systems for which classical system identification and con-
trol techniques are often insufficient due to unknown sources of non-
linearities inherent in these systems. Learning techniques are a possible
way to overcome such limitations by aiding the design of appropriate
control laws (Slotine, 1991), which often involve decisions based on a
multitude of sensors and actuators. Learning also seems to be the only
viable research approach towards the generation of flexible autonomous
robots that can perform multiple tasks (Schaal, 1999), with the hope
of creating a completely autonomous humanoid robot at some point.

Among the characteristics of the motor learning problems in hu-
manoid robots are high dimensional input spaces with potentially re-
dundant and irrelevant dimensions, nonstationary input and output
distributions, essentially infinite training data sets with no representa-
tive validation sets, and the need for continual learning. Most learning
tasks fall into the domain of regression problems, e.g., as in learning
dynamics models, or they at least involve regression problems, e.g., as
in learning a policy with reinforcement learning. Interestingly, the class
of on-line learning of regression problems with the characteristics above
has so far not been conquered by the new developments in statistical
learning. Bayesian inference (Bishop, 1995) is usually computationally
too expensive for real-time application as it requires representation of
the complete joint probablity densities of the data. The framework
of structural risk minimization(Vapnik, 1995), the most advanced in
form of Support Vector Machines, excels in classification and finite
batch learning problems, but has yet to show compelling performance
in regression and incremental learning. However techniques from non-
parametric regression, in particular the methods of locally weighted
learning (Atkeson et al, 1997), have recently advanced to meet all the
requirements of real-time learning in high-dimensional spaces (Schaal
et al, 2000).

In this paper, we will present one of the most advanced locally
weighted learning algorithms, Locally Weighted Projection Regression
(LWPR), and its application to three challenging problems of learning
in humanoid robotics, i.e., (i) an inverse dynamics model of a 7 DOF
anthropomorphic robot, (ii) an inverse kinematics map of a redundant
dextrous arm, and (iii) the bio-mimetic gaze stabilization of a humanoid
oculomotor system. In the following sections, we will first explain the
LWPR algorithm and then introduce the various learning tasks and
illustrate learning results from real-time learning on the actual robots
for each of the tasks. To the best of our knowledge, this is the first time
that real-time learning of such complex models has been accomplished
in robot control.

AutRob.tex; 12/09/2001; 19:25; p.2

Statistical Learning for Humanoid Robots 3

2. Locally Weighted Projection Regression

The core concept of our learning approach is to approximate nonlinear
functions by means of piecewise linear models (Atkeson et al, 1997).
The learning system automatically determines the appropriate number
of local models, the parameters of the hyperplane in each model, and
also the region of validity, called receptive field (RF), of each of the
model, formalized as a Gaussian kernel:

wk = exp(−1
2
(x− ck)TDk(x− ck)), (1)

Given a query point x, each linear model calculates a prediction yk =
βkx. The total output of the learning system is the weighted mean of
all K linear models:

ŷ =
K∑

k=1

wkyk/
K∑

k=1

wk,

also illustrated in Fig. 1. Learning in the system involves determining
the linear regression parameter βk and the distance metric Dk. The
center ck of the RF remains fixed. Local models are created as and
when needed as described in Section 2.3.

2.1. Local Dimensionality Reduction

Despite its appealing simplicity, the “piecewise linear modeling” ap-
proach becomes numerically brittle and computationally too expensive
in high dimensional input spaces. Given the empirical observation that
high dimensional data lie often on locally low dimensional distribu-
tions, it is possible to develop an efficient approach to exploit this
property. Instead of using ordinary linear regression to fit the local
hyperplanes, we suggest to employ Partial Least Squares (PLS) (Wold,
1975; Frank & Friedman, 1993). PLS recursively computes orthogonal
projections of the input data and performs single variable regressions
along these projections on the residuals of the previous iteration step.
Table I illustrates PLS in pseudocode for a global linear model where
the input data is in the rows of the matrix X, and the corresponding
one dimensional output data is in the vector y. The key ingredient in
PLS is to use the direction of maximal correlation between the residual
error and the input data as the projection direction at every regression
step. Additionally, PLS regresses the inputs of the previous step against
the projected inputs sr in order to ensure the orthogonality of all the
projections ur (Step 2b). Actually, this additional regression could be
avoided by replacing pr with ur, similar to techniques used in principal

AutRob.tex; 12/09/2001; 19:25; p.3

4 Vijayakumar et. al.

Table I. Pseudocode of PLS projection regression

1. Initialize: Xres = X, yres = y

2. For r = 1 to R (# projections)

a) ur = XT
resyres; βr = s

T
r yres/(s

T
r sr) where sr = Xresur.

b) yres = yres − srβr; Xres = Xres − srpr
T where pr = XT

ressr/(s
T
r sr).

component analysis (Sanger, 1989). However, using this regression step
leads to better performance of the algorithm. This effect is due to the
fact that PLS chooses the most effective projections if the input data
has a spherical distribution: with only one projection, PLS will find the
direction of the gradient and achieve optimal regression results. The re-
gression step in 2b modifies the input data Xres such that each resulting
data vectors have coefficients of minimal magnitude and, hence, push
the distribution of Xres to become more spherical.

An incremental locally weighted version of the PLS algorithm is
derived in Table II (Vijayakumar & Schaal, 2000). Here, λ ∈ [0, 1]
denotes a forgetting factor that determines how quickly older data will
be forgotten in the various PLS parameters, similar to the recursive
system identification techniques (Ljung & Soderstrom, 1986). The vari-
ables SSr, SRr and SZr are memory terms that enable us to do the
univariate regression in step 5 in a recursive least squares fashion, i.e.,
a fast Newton-like method.

Since PLS selects the univariate projections very efficiently, it is even
possible to run locally weighted PLS with only one projection direction
(denoted as LWPR-1). The optimal projection is in the direction of
the local gradient of the function to be approximated. If the locally
weighted input data forms a spherical distribution in a local model,
the single PLS projection will suffice to find the optimal direction.
Otherwise, the distance metric (and hence, weighting of the data) will
need to be adjusted to make the local distribution more spherical. The
learning rule of the distance metric can accomplish this adjustment, as
explained below. It should be noted that Steps 8-10 in Table II become
unnecessary for the uni-projection case.

2.2. Learning the Distance Metric

The distance metric Dk and hence, the locality of the receptive fields,
can be learned for each local model individually by stochastic gradient
descent in a leave-one-out cross validation cost function. Note that

AutRob.tex; 12/09/2001; 19:25; p.4

Statistical Learning for Humanoid Robots 5

Table II. Incremental locally weighted PLS for one RF centered at c

Initialization:
x

0
0 = 0, u0 = 0, β0

0 = 0,
W 0 = 0

Given: Training point (x, y)

w = exp(−1
2
(x−c)T D(x−c))

Update the means :

W n+1 = λW n + w

x
n+1
0 =

λW n
x

n
0 + wx

W n+1

βn+1
0 =

λW nβn
0 +wy

W n+1

Update the local model

Initialize:
z = x− x

n+1
0 , res1 = y − βn+1

0

For r = 1 : R (# projections)

1. un+1
r = λun

r + wz resr

2. sr = z
T
u

n+1
r /(un+1

r
T
u

n+1
r)

3. SSn+1
r = λSSn

r + w s2
r

4. SRn+1
r = λSRn

r +w sr resr

5. βn+1
r = SRn+1

r /SSn+1
r

6. resr+1 = resr − srβ
n+1
r

7. MSEn+1
r = λMSEn

r + w res2
r+1

8. SZn+1
r = λSZn

r +wzsr

9. pn+1
r = SZn+1

r /SSn+1
r

10. z = z − srp
n+1
r

Predicting with novel data (xq): Initialize: y = β0, z = xq − x0

Repeat for r=1:R

− y = y + βrsr where sr = u
T
r z

− z = z − srp
n
r

this update does not require competitive learning – only a completely
local learning rule is needed, and leave-one-out cross validation can be
performed without keeping data in memory (Schaal & Atkeson. 1998).
The update rule can be written as :

Mn+1 = Mn − α
∂J

∂M
where D = MTM (for positive definiteness)

(2)
and the cost function to be minimized is:

J =
1∑M

i=1 wi

M∑
i=1

R∑
r=1

wires
2
r+1,i

(1−wi
s2
r,i

sT
r Wsr

)2
+

γ

N

N∑
i,j=1

D2
ij =

R∑
r=1

(
M∑
i=1

J1,r)+J2.

(3)
where M denotes the number of training data, and N the number
of input dimensions. A stochastic version of the gradient ∂J

∂M can be
derived from the cost function by keeping track of several “memory
terms” as shown in Table III.

AutRob.tex; 12/09/2001; 19:25; p.5

6 Vijayakumar et. al.

Table III. Derivatives for distance metric update

∂J

∂M
≈

R∑
r=1

(

M∑
i=1

∂J1,r

∂w
)

∂w

∂M
+

w

W n+1

∂J2

∂M
(stochastic update)

∂w

∂Mkl
= −1

2
w(x− c)T

∂D

∂Mkl
(x− c);

∂J2

∂Mkl
= 2

γ

N

N∑
i=1,j=1

Dij
∂Dij

∂Mkl

∂Dij

∂Mkl
= Mkjδil +Mkiδjl; where δij = 1 if i = j else δij = 0.

Compute the following for each projection direction r:

M∑
i=1

∂J1,r

∂w
=

e2
cv,r

W n+1
− 2(P

n+1
r srer)

W n+1
Hn

r − 2(P
n+1
r sr)

2

W n+1
Rn

r − En+1
r

(W n+1)2

+[Tn+1
r − 2Rn+1

r P n+1
r Cn+1

r]
(I − uru

T
r /(uT

r ur))z resr

W n+1
√
u

T
r ur

Cn+1
r = λCn

r + wsrz
T , er = resr+1, ecv,r =

er

1− wP n+1
r s2

r

P n+1
r =

1

SSn+1
r

, Hn+1
r = λHn

r +
w ecv,rsr

(1− w hr)

Rn+1
r = λRn

r +
w2s2

re
2
cv,r

(1− w hr)
where hr = P n+1

r s2
r

En+1
r = λEn

r + we2
cv,r; Tn+1

r = λTn
r +

w(2we2
cv,rsrP

n+1
r − ecv,rβ

n+1
r)

(1− w hr)
z

T

2.3. The Complete LWPR Algorithm

All the ingredients above can be combined in an incremental learn-
ing scheme that automatically allocates new locally linear models as
needed. The final learning network is illustrated in Fig. 1 and an outline
of the algorithm is shown in Table IV.

In this pseudo-code, wgen is a threshold that determines when to
create a new receptive field, and Ddef is the initial (usually diagonal)
distance metric in Eq.(1). The initial number of projections is set to
r = 2. The algorithm has a simple mechanism of determining whether
r should be increased by recursively keeping track of the mean-squared
error (MSE) as a function of the number of projections included in a
local model, i.e., step 7 in the incremental PLS pseudocode. If the MSE
at the next projection does not decrease more than a certain percentage
of the previous MSE, i.e., MSEi+1

MSEi
> φ, where φ ∈ [0, 1], the algorithm

will stop adding new projections locally. For a diagonal distance metric
D and under the assumption that the number of projections R remains
small, the computational complexity of the update of all parameters of

AutRob.tex; 12/09/2001; 19:25; p.6

Statistical Learning for Humanoid Robots 7

Table IV. Psuedocode of the complete LWPR algorithm

− Initialize the LWPR with no receptive field (RF);

− For every new training sample (x,y):

• For k=1 to K(# of receptive fields):

∗ calculate the activation from Eq.(1)

∗ update projections & regression (Table II) and Distance Metric
(Table III)

∗ check if no. of projections needs to be increased (cf. Section 2.3)

• If no RF was activated by more than wgen;

∗ create a new RF with r = 2, c = x, D = Ddef

LWPR is linear in the number of input dimensions n. For the LWPR-1
variant, this O(n) computational complexity is always guaranteed.

3. Real-Time Learning for Humanoid Robots

One of the main motivations of the development of LWPR was that
model-based control of our humanoid robots with analytical models
did not result in sufficient accuracy. The following sections describe how
LWPR has allowed us to improve model-based control with models that
were learned, i.e., they were acquired very rapidly in real-time while
the system was trying to accomplish a task. Our results are one of the
first in the learning literature that demonstrate the feasibility of real-
time statistical learning in high-dimensional systems such as humanoid
robots.

3.1. Real-Time Learning of Inverse Dynamics

A common strategy in robotic and biological motor control is to convert
kinematic trajectory plans into motor commands by means of an inverse
dynamics model. The inverse dynamics takes the desired positions,
velocities, and accelerations of all DOFs of the robot and outputs the
appropriate motor commands. In the case of learning with our seven
DOF anthropomorphic robot arm (see Fig. 2(a)), the inverse dynamics
model receives 21 inputs and outputs 7 torque commands. If derived
analytically under a rigid body dynamics assumption (An et al, 1988),
the most compact recursive formulation of the inverse dynamics of our
robot results in about 20 pages of compact C-code, filled with nested
sine and cosine terms. For on-line learning, motor commands need to be

AutRob.tex; 12/09/2001; 19:25; p.7

8 Vijayakumar et. al.

Output

PLSui,k

x1

x2

x3
x4

xn

ytrainLearning Module Input

Dk

wk

yk
^

Xreg

βi,k

Σ

ŷ

Weighted
 Average

Receptive field
centered at ck

Inputs

Linear unit

Correlation Computation module

X in
put

Figure 1. Information processing unit of LWPR

generated from the model at 480Hz in our implementation. Updating
the learning system can take place at a lower rate but should remain
as high as possible to capture suffcient data in fast movements – we
usually achieve about 70Hz updating rate.

Learning regression problems in such high dimensional input space
is a daunting problem from the view of the bias-variance trade-off. In
learning control, training data is generated by the learning system itself,
and it is impossible to assess a priori what structural complexity that
data is going to have. Fortunately, actual movement systems do not
fill the data space in a completely random way. Instead, when viewed
locally, data distributions tend to be low dimensional, e.g., about 4-
6 dimensional for the inverse dynamics (Schaal et al, 1998) of our
robot instead of the global 21 input dimensions. This property, which
is exploited by the LWPR algorithm, is a key element in the excellent
real-time performance of our learning scheme.

AutRob.tex; 12/09/2001; 19:25; p.8

Statistical Learning for Humanoid Robots 9

(a)

(b)

Figure 2. (a) 7-DOF SARCOS dexterous arm (b) 30-DOF Humanoid Robot

3.1.1. Performance Comparison on a Static Data Set
Before demonstrating the applicability of LWPR in real-time, a com-
parison with alternative learning methods will serve to demonstrate
the complexity of the learning task. We collected 50,000 data points
from various movement patterns from our 7 DOF anthropomorphic
robot (Fig. 2a) at 50Hz sampling frequency. 10 percent of this data
was excluded as a test set. The training data was approximated by 4
different methods: i) parameter estimation based on an analytical rigid
body dynamics model (An et al, 1988), ii) Support Vector Regression
(Saunders et al, 1998), iii) LWPR-1, and iv) full LWPR. It should be
noted that neither i) nor ii) are incremental learning methods, i.e., they
require batch learning. Using a parametric model as suggested in i) and
just approximating its open parameters from data results in a global
model of the inverse dynamics and is theroretically the most power-
ful method. However, given that our robot is actuated hydraulically
and rather lightweight and compliant, we know that the rigid body
dynamics assumption is not fully justified. Method ii), Support Vector
Regression, is a relatively new statistical learning approach that was
derived from the theory of structural risk minimization. In many re-

AutRob.tex; 12/09/2001; 19:25; p.9

10 Vijayakumar et. al.

0

0.05

0.1

0.15

0.2

0 1000000 2000000 3000000 4000000 5000000 6000000

nM
S

E

Training Data Points

Parameter Identification

SVM

LWPR-1

LWPR

Figure 3. Comparison of generalization error (nMSE) traces for different learning
schemes

cent publications, support vector machines have demonstrated superior
learning performance over previous algorithms, such that a comparison
of this method with LWPR seemed to be an interesting benchmark.
LWPR as used in iii) and iv) was exactly the algorithm described in
the previous section. Methods ii)-iv) learned a separate model for each
output of the inverse dynamics, i.e., all models had a univariate output
and 21 inputs. LWPR employed a diagonal distance metric.

Fig. 3 illustrates the function approximation results for the shoulder
motor command graphed over the number of training iterations (one
iteration corresponds to the update from one data point). Surprisingly,
rigid body parameter estimation achieved the worst results. LWPR-1
outperformed parameter estimation, but fell behind SVM regression.
Full LWPR performed the best. The results for all other DOFs were
analogous. For the final result, LWPR employed 260 local models,
using an average of 3.2 local projections. LWPR-1 did not perform
better because we used a diagonal distance metric. The abilities of a
diagonal distance metric to “carve out” a locally spherical distribution
are too limited to accomplish better results – a full distance metric can
remedy this problem, but would make the learning updates quadratic
in the number of inputs. These results demonstrate that LWPR is a
competitive function approximation technique.

AutRob.tex; 12/09/2001; 19:25; p.10

Statistical Learning for Humanoid Robots 11

3.1.2. On-line Learning
We implemented full LWPR on our robotic setup. Out of the four
parallel processors of the system, one 366Mhz PowerPC processor was
completely devoted to lookup and learning with LWPR. Each DOF
had its own LWPR learning system, resulting in 7 parallel learning
modules. In order to accelerate lookup and training times, we added a
special data structure to LWPR. Each local model maintained a list of
all other local models that overlapped sufficiently with it. Sufficient
overlap between two local model i and j can be determined from
the centers and distance metrics. The point x in input space that is
the closest to both centers in the sense of a Mahalanobis distance is
x = (Di + Dj)−1(Dici + Djcj). Inserting this point into Eq.(1) of
one of the local models gives the activation w due to this point. Two
local models are listed as sufficiently overlapping if w >= wgen (cf.
LWPR outline). For diagonal distance metrics, the overlap computation
is linear in the number of inputs. Whenever a new data point is added
to LWPR, one neighborhood relation is checked for the maximally
activated RF. An appropriate counter for each local model ensures that
overlap with all other local models is checked exhaustively. Given this
“nearest neighbor” data structure and the fact that a movement system
generates temporally highly correlated data, lookup and learning can be
confined to only few RFs. For every lookup (update), the identification
number of the maximally activated RF is returned. The next lookup
(update) will only consider the neighbors of this RF. It can be proved
that this method performs as good as an exhaustive lookup (update)
strategy that excludes RFs that are activated below a certain threshold
wcutoff .

The LWPR models were trained on-line while the robot performed a
pseudo randomly drifting figure-8 pattern in front of its body. Lookup
proceeded at 480Hz, while updating the learning model was achieved at
about 70Hz. At certain intervals, learning was stopped and the robot
attempted to draw a planar figure-8 at 2Hz frequency for the entire
pattern. The quality of these drawing patterns is illustrated in Fig. 4a,b.
In Fig. 4a, Xdes denotes the desired figure-8 pattern, Xsim illustrates
the figure-8 performed by our robot simulator that uses a perfect inverse
dynamics model (but not necessarily a perfect tracking and numerical
integration algorithm), Xparam is the performance of the estimated rigid
body dynamics model, and Xlwpr shows the results of LWPR. While
the rigid body model has the worst performance, LWPR obtained the
results comparable to the simulator.

Fig. 4b illustrates the speed of LWPR learning. The Xnouff trace
demonstrates the figure-8 patterns performed without any inverse dy-
namics model, just using a low gain PD controller. The other traces

AutRob.tex; 12/09/2001; 19:25; p.11

12 Vijayakumar et. al.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.3 0.35 0.4 0.45 0.5 0.55 0.6

z
di

sp
la

ce
m

en
t (

in
 m

et
er

s)

x displacement (in meters)

X_des

X_sim

X_lwpr

X_param

(a)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.3 0.35 0.4 0.45 0.5 0.55 0.6

z
di

sp
la

ce
m

en
t (

in
 m

et
er

s)

x displacement (in meters)

X_nouff

X_lwpr10

X_lwpr20

X_lwpr30

X_lwpr60

(b)

Figure 4. (a) Robot end effector motion traces under different control schemes (b)
Progress of online learning with LWPR control

show how rapidly LWPR learned the figure-8 pattern during training:
they denote performance after 10, 20, 30, and 60 seconds of training.
After 60 seconds, the figure-8 is hardly distinguishable from the desired
trace.

3.2. Inverse kinematics learning

Since most movement tasks are defined in coordinate systems that are
different from the actuator space of the robot, coordinate transfor-
mation from task to actuator space must be performed before motor
commands can be computed. On a system with redundant degrees-
of-freedom (DOFs), this inverse kinematics transformation from ex-
ternal plans to internal coordinates is often ill-posed as it is under-
constrained. If we define the intrinsic coordinates of a manipulator
as the n-dimensional vector of joint angles θθ ∈ Rn, and the position
and orientation of the manipulator’s end effector as the m-dimensional
vector x ∈ Rm, the forward kinematic function can generally be written
as:

x = f(θθ) (4)

while what we need is the inverse relationship:

θθ = f−1(x) (5)

For redundant systems, like our Sarcos robots (see Fig. 2), solutions
to the above equation are non-unique. Traditional inverse kinematics

AutRob.tex; 12/09/2001; 19:25; p.12

Statistical Learning for Humanoid Robots 13

algorithms address how to determine a particular solution in face of
multiple solutions by optimizing an additional cost criterion g = g(θθ).
Most approaches favor local optimizations that compute an optimal
change in θθ, ∆θθ, for a small change in x, ∆x and then integrate ∆θθ
to generate the entire joint space path. Resolved Motion Rate Control
(RMRC) is one such local method which uses the Jacobian J of the
forward kinematics to describe a change of the endeffector’s position
as:

ẋ = J(θθ)θ̇θ (6)

This equation can be solved for θ̇θ by taking the inverse of J if it is square
i.e. m = n, and non-singular, or by using pseudo-inverse computations
that minimize g in the null space of J (Liegeois, 1977):

θθ = J#ẋ− α(I − J#J)
∂g

∂θθ
(7)

3.2.1. Motivation for Learning
Learning of inverse kinematics is useful when the kinematic model of
the robot is not known accurately, when Cartesian information is pro-
vided in uncalibrated camera coordinates, or when the computational
complexity of analytical solutions becomes too high. For instance, in
our humanoid robot we observed that offsets in sensor readings and
inaccurate knowledge of the exact kinematics of the robot can lead to
significant error accumulations for analytical inverse kinematics com-
putations, and that it is hard to maintain an accurate calibration of
the active vision system of the robot. Instead of re-calibrating the
entire robot frequently, we would rather employ a self-calibrating, i.e.,
learning approach. An additional appealing feature of learning inverse
kinematics is that it avoids problems due to kinematic singularities–
learning works out of experienced data, and such data is always phys-
ically correct and does not demand impossible postures as can result
from an ill-conditioned matrix inversion.

A major obstacle in learning inverse kinematics, is that the inverse
kinematics of a redundant kinematic chain has infinitely many solu-
tions. In the context of eq. (6), this means that multiple θ̇θi, are mapped
to the same ẋ. Algorithms that learn the mapping θ̇θ ← f−1(x) average
over all the solutions θ̇θi, assuming that different θ̇θi for the same ẋ are
due to noise. This may result in an invalid solution if the multiple θ̇θi

lie in a non-convex set, as is frequently the case in robot kinematics
(Jordan & Rumelhart, 1992).

This problem can be avoided by a specific input representation to
the learning network (Bullock et al, 1993) which allows local averaging

AutRob.tex; 12/09/2001; 19:25; p.13

14 Vijayakumar et. al.

over θ̇θi. This can be shown by averaging eq. (6) over multiple θ̇θi that
map to the same ẋ, for a fixed θθ.

〈ẋ〉 =
〈
J (θθ) θ̇θi

〉
i
⇒ ẋ = J (θθ)

〈
θ̇θi

〉
= J (θθ) ¯̇θθi (8)

Since the Jacobian relates the ẋ and θ̇θi in linear form, even for
redundant systems the average of the solutions will result in the desired
ẋ as long as the averaging is carried out in the vicinity of a particular
θθ.

Thus we propose to learn the inverse mapping function with our
spatially localized LWPR learning system based on the input/output
representation (ẋ, θθ) → (θ̇θ). This approach will automatically resolve
the redundancy problem without resorting to any other optimization
approach: the local average solution picked is simply the local average
over the solutions that were experienced. The algorithm will also per-
form well near singular posture since, as mentioned before, it cannot
generate joint movements that it has never experienced.

3.2.2. Applying LWPR to inverse kinematics learning
In order to apply LWPR to inverse kinematics learning for our hu-
manoid robot, we learn a separate model to generate each of the joint
angles such that each of the models performs a 29 (26 degrees of freedom
neglecting the 4 degrees of freedom for the eyes, plus 3 Cartesian inputs)
to 1 mapping (ẋ, θθ)→ (θ̇l), and we have 26 such models (l = 1, . . . , 26).

The resolution of redundancy requires creating an optimization cri-
terion that allows the system to choose a particular solution to the
inverse kinematics problem. Given that our robot is a humanoid robot,
we would like the system to assume a posture that is as “natural”
as possible. Our definition of “natural” corresponds to the posture
being as close as possible to some default posture θθopt, as advocated by
behavioral studies (Cruse & Brüer, 1987). Hence the total cost function
for training LWPR can be written as follows:

Q =
1
2

(
θ̇θ − ˆ̇

θθ

)T (
θ̇θ − ˆ̇

θθ

)
+

1
2
α

(
ˆ̇
θθ − ∆θθ

∆t

)T

W
(
ˆ̇
θθ − ∆θθ

∆t

)
(9)

where ∆θθ = θθopt − θθ represents the distance of the current posture

from the optimal posture θθopt, W is a diagonal weight matrix, and ˆ̇θθ
is the current prediction of LWPR for z = (ẋ, θθ). Minimizing Q can be
achieved by presenting LWPR with the target values:

θ̇θtarget = θ̇θ − αW
(
ˆ̇θθ −∆θθ

)
(10)

AutRob.tex; 12/09/2001; 19:25; p.14

Statistical Learning for Humanoid Robots 15

These targets are commposed of the self-supervised target θ̇θ, slightly
modified by a component to enforce the optimization of the cost func-
tion within the null space of the Jacobian (c.f. eq. (7)).

As an exploration strategy, we initially bias the output of LWPR
with a term that creates a motion towards θθopt:

˜̇
θθ = ˆ̇

θθ +
1
nr

∆θθ (11)

The strength of the bias decays with the number of data points nr seen
by the largest contributing local model of LWPR. This additional term
allows creating meaningful (and importantly, data-generating) motion
even in regions of the joint space that have not yet been explored.
This enables us to learn inverse kinematics “on the fly”, i.e., while
attempting to perform the required task itself.

An important aspect of our formulation of the inverse kinematics
problem is that although the inputs to the learning problem comprise
ẋ and θθ, the locality of the local model is a function of only θθ, while the
linear projection directions (given this locality in θθ) are solely depen-
dent on ẋ (cf. Eq.(8)). We encode this prior knowledge into LWPR’s
learning process by setting the initial values of the diagonal terms of
the distance metric D in Eq. (1) that correspond to the ẋ variables to
zero. This bias ensures that the locality of the receptive fields in the
model is solely based on θθ.

LWPR has the ability to determine and ignore inputs that are locally
irrelevant to the regression, but we also provide this information by
normalizing the input dimensions such that the variance in the relevant
dimensions is large. This scaling results in larger correlations of the rel-
evant inputs with the output variables and hence biases the projection
directions towards the relevant subspace. We use this feature to scale
the dimensions corresponding to the ẋ variables so that the regression
within a local model is based primarily on this subspace.

3.2.3. Experimental Evaluations
The goal task in each of the experiments was to track a figure-eight
trajectory in Cartesian space created by simulated visual input to
the robot. In each of the figures in this section, the performance of
the system is plotted along with that of an analytical pseudo-inverse
solution (c.f. Eq. (7) that was available for our robot from previous
work (Tevatia & Schaal, 2000).

The system was first trained on data generated from small sinusoidal
motions of each degree of freedom about a randomly chosen mean in θθ
space. Every few seconds this mean is repositioned. The performance

AutRob.tex; 12/09/2001; 19:25; p.15

16 Vijayakumar et. al.

-0.2

-0.1

0

0.1

0.2

0.2 0.3 0.4 0.5 0.6

z

x

Analytical Motor-Babbling

(a)

-0.2

-0.1

0

0.1

0.2

0.2 0.3 0.4 0.5 0.6

z

x

Analytical Online Learning

(c)

-0.2

-0.1

0

0.1

0.2

0.2 0.3 0.4 0.5 0.6

z

x

Analytical Task-Specific

(b)

-1

-0.5

0

0.5

1

0.85 1.05 1.25 1.45 1.65 1.85 2.05

jo
in

t v
el

oc
ity

joint position

Analytical (EB) Learned (EB)

(d)

Figure 5. Tracking a figure eight with learned inverse kinematics. (a) Performance
after training with motor babbling (b) Results after improving performance using
the data seen on the task (c) Performance during the first 3 minutes of learning
from scratch on the task (d) Phase plot of joint position and joint velocity

of the system after training the system on this “motor babbling” for
10 minutes is shown in Fig. 5(a).

In the second experiment, the robot executed the figure-eight again,
using the trained LWPR from the first experiment. In this case however,
the system was allowed to improve itself with the data collected while
performing the task. As shown in Fig. 5(b), after merely 1 minute
of additional learning, the system performs as well as the analytical
pseudo-inverse solution.

The final experiment started with an untrained system, and endeav-
ored to learn the inverse kinematics from scratch, while performing the
figure-eight task itself. Fig. 5(c) shows the progression of the system’s
performance from the beginning of the task to about 3 minutes into

AutRob.tex; 12/09/2001; 19:25; p.16

Statistical Learning for Humanoid Robots 17

the learning. The system initially starts out making slow inaccurate
movements. As it collects data however, it rapidly converges towards
the desired trajectory. Within a few more minutes of training, the
performance approached that seen in Fig. 5(b).

It is important to note that for redundant manipulators, following a
periodic trajectory in operational space does not imply consistency in
joint space, i.e., the trajectory followed in joint space may not be cyclic
since there could be aperiodic null space motion that does not affect
tracking accuracy. Fig. 5(d) shows a phase plot of one of the joints
(elbow flexion and extension), over about 30 cycles of the figure-eight
trajectory after learning had converged. The presence of a single loop
over all cycles shows that the inverse kinematics solution found by our
algorithm is indeed consistent.

3.3. Learning for Biomimetic Gaze Stabilization

Oculomotor control in a humanoid robot faces similar problems as
biological oculomotor systems, i.e., the stabilization of gaze in face of
unknown perturbations of the body, selective attention, stereo vision,
and dealing with large information processing delays. Given the non-
linearities of the geometry of binocular vision as well as the possible
nonlinearities of the oculomotor plant, it is desirable to accomplish
accurate control of these behaviors through learning approaches. Here,
we describe the application of LWPR to a learning control system
for the phylogenetically oldest behaviors of oculomotor control, the
stabilization reflexes of gaze.

In our recent work (Shibata & Schaal, 2001), we described how
control theoretically reasonable choices of control components result
in an oculomotor control system that resembles the known functional
anatomy of the primate oculomotor system. The resulting control cir-
cuitry for such a system is shown in Fig. 6. The core of the learning
system is derived from the biologically inspired principle of feedback-
error learning combined with the LWPR algorithm. There are essen-
tially three blocks in the system (c.f. Fig. 6): (1) the middle block
which is the vestibular (head velocity) input based linear feedforward
controller with conservatively low gains (2) the top block that makes
up the non-linear feedforward controller (continuously adapted using
LWPR) with vestibular inputs and (3) a lower block which is the retinal
slip based negative feedback controller that generates a delayed error
signal to both the linear (fixed) feedforward control and the non-linear
(continuously learned) feedforward circuit.

Feedback Error Learning (FEL) is a principle of learning motor
control. It employs an approximate way of mapping sensory errors into

AutRob.tex; 12/09/2001; 19:25; p.17

18 Vijayakumar et. al.

�

�

�
�

�

� ���	
�
�

�	���

��
����
����	�
��	
����

�

����
����	�
�
����
�

�

�

�

�

���������	
���

������
	
���

�

���	
�
������
�������������������

�
��
	

	������

����������

�����	

Figure 6. A control diagram of the VOR-OKR learning system. The lowest box
corresponds to the OKR-like negative feedback circuit, the middle box corresponds
to the linear feedforward model and the top box corresponds to the continuously
learned non-linear feedforward circuitry

motor errors that, subsequently, can be used to train a neural network
by supervised learning. From the viewpoint of adaptive control, FEL
is a model-reference adaptive controller. The controller is assumed to
be equipped a priori with a stabilizing linear feedback controller whose
performance, however, is not satisfactory due to nonlinearities in the
plant and delays in the feedback signals. Therefore, the feedback motor
command of this controller is employed as an error signal to train
a neural network controller. Given that the neural network receives
the correct inputs, i.e., usually current and desired state of the plant,
it can acquire a nonlinear control policy that includes both an in-
verse dynamics model of the plant and a nonlinear feedback controller.
(Kawato, 1990) proved the convergence of this adaptive control scheme
and advocated its architecture as an abstract model of learning in the
cerebellum.

In order to employ LWPR for learning under the FEL scheme, we
require the presence of a target output y (See Table II). In motor
learning, target values for motor commands rarely exist since errors
are usually generated in sensory space, not in motor command space.
The FEL strategy can be interpreted as generating a pseudo target for

AutRob.tex; 12/09/2001; 19:25; p.18

Statistical Learning for Humanoid Robots 19

����� !"

#�$����
%������&����
�

����� !"

#�$����
%������&����
�

�
�
�
&'
(
)

�*)*�+

,-.&.��

,/�&.
�����

�����0!!

�
�
�
�

&
�
��
�
�
	�

�

�

&
�

�
�
�
�
�

�����0!!

�����0!!�
�
�
&'
(
)

1��2��
��
������

.�+%3�4
���&4�,3+*+5

+%).
)����	

+%).
)����	

Figure 7. The vision head subsystem of our humanoid experimental setup

the motor command y(t − 1) = ŷ(t − 1) + τfb(t), where τfb denotes
the feedback error signal and ŷ is the predicted output. Using these
principles and by employing the LWPR algorithm for on-line learning,
we demonstrate that our humanoid robot is able to acquire high per-
formance visual stabilization reflexes after about 40 seconds of learning
despite significant nonlinearities and processing delays in the system.

3.3.1. Experimental setup
Fig. 7 depicts our experimental system. Each DOF of the robot is actu-
ated hydraulically out of a torque control loop. Each eye of the robot’s
oculomotor system consists of two cameras, a wide angle (100 degrees
view-angle horizontally) color camera for peripheral vision, and second
camera for foveal vision, providing a narrow-view (24 degrees view-
angle horizontally) color image. This setup mimics the foveated retinal
structure of primates, and it is also essential for an artificial vision
system in order to obtain high resolution vision of objects of interest
while still being able to perceive events in the peripheral environment.
Each eye has two independent degrees of freedom, a pan and a tilt
motion.

AutRob.tex; 12/09/2001; 19:25; p.19

20 Vijayakumar et. al.

The controllers are implemented in two subsystems, a learning con-
trol subsystem and a vision subsystem, each operated out of a VME
rack using the real-time operating system VxWorks. Three CPU boards
(Motorola MVME2700) are used for the learning control subsystem,
and two CPU boards (Motorola MVME2604) are provided for the
vision subsystem. In the learning control subsystem, CPU boards are
used, respectively, for: i) low level motor control of the eyes and other
joints of our robot (compute torque mode), ii) visuomotor learning, and
iii) receiving data from the vision subsystem. All communication be-
tween the CPU boards is carried out through the VME shared memory
communication which, since it is implemented in hardware, is very fast.
In the vision subsystem, each CPU board controls one Fujitsu tracking
vision board in order to calculate retinal slip and retinal slip velocity
information of each eye. NTSC video signals from the binocular cameras
are synchronized to ensure simultenous processing of both eyes’ vision
data. Vision data are sent via a serial port (115200 bps) to the learning
control subsystem. For the experimental demonstrations of this paper,
only one peripheral camera is used for VOR-OKR in its horizontal
(pan) degree-of-freedom. Multiple degrees of freedom per camera, and
multiple eyes just require a duplication of our control/learning circuits.
If the image on a peripheral camera is stabilized, the image on the
mechanically-coupled foveal vision is also stabilized. In order to mimic
the semicircular canal of biological systems, we attached a three-axis
gyro-sensor circuit to the head. From the sensors of this circuit, the
head angular velocity signal is acquired through a 12 bit A/D board.
The oculomotor and head control loop runs at 480 Hz, while the vision
control loop runs at 30 Hz.

We use both visual-tracking and optical flow calculation in order
to acquire the retinal slip and the retinal slip velocity, respectively.
Spatial averaging of multiple optical flow detectors were used to re-
duce the noise. To maintain a 30 Hz vision processing loop rate, pixels
were sampled only every three dots. Due to this sampling, the effective
angular resolution around the center of the image was about 0.03 rad.

3.3.2. Experimental results of online gaze stabilzation
There are three sources of nonlinearities both in biological and artificial
oculomotor systems: i) muscle nonlinearities or nonlinearities added by
the actuators and the usually heavy cable attached to the cameras, ii)
perceptual distortion due to foveal vision, and iii) off-axis effects. Off-
axis effects result from the non-coinciding axes of rotation of eye-balls
and the head and require a nonlinear adjustment of the feedforward
controller as a function of focal length, eye, and head position. Note that

AutRob.tex; 12/09/2001; 19:25; p.20

Statistical Learning for Humanoid Robots 21

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [sec]

Re
cti

fie
d

m
ea

n
re

tin
al

sli
p

[ra
d]

0 2 4 6 8 10 12 14 16 18 20
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R
et

in
al

 s
lip

 [r
ad

]

Figure 8. Time course of the mean retinal slip: the dashed line corresponds to linear
learning result and the solid line corresponds to non-linear learning with LWPR;
(inset) retinal slip during the last part of learning

this off-axis effect is the most significant nonlinearity in our oculomotor
system.

In the learning experiment, we will compare the learning perfor-
mance of our LWPR non-linear online learning algorithm against Re-
cursive Least Squares (RLS) regression, a linear learning system (Ljung
& Soderstrom, 1986). For this purpose, a large board with texture
appropriate for vision processing was placed in front of the robot. The
distance between a camera and the board was around 50 cm, i.e., a
distance that emphasized the off-axis nonlinearities. In this experiment,
the head was moved horizontally according to a sinusoidal signal with
frequency 0.8 Hz and amplitude 0.25 rad.

Fig. 8 shows the time course of the rectified retinal slip, smoothed
with a moving average over a one second time window. The dashed line
corresponds to RLS learning, while the solid line presents the learning
performance of LWPR. The benefits for a nonlinear learning system
are clearly demonstrated in this plot: both learning curves show rapid
improvement over time, but the final retinal slip out of LWPR is almost
half of the remaining slip from linear learning. Fig. 8(inset) shows the
time course of the raw retinal slip signals at the end of learning. Since,
as mentioned in Section 3.3.1, the effective angular resolution around
the center of the image was 0.03 rad, the learning results shown in
Fig. 8 are satisfactory as their amplitude is also about 0.03 rad, i.e.,
the best result achievable with this visual sensing resolution.

The nonlinear component generated by the off-axis effect is around
0.05 rad when the head is rotated 0.25 rad and the visual stimulus is at

AutRob.tex; 12/09/2001; 19:25; p.21

22 Vijayakumar et. al.

0.5 m distance (based on analytical computations from the geometry
of off-axis vision head system). This difference is consistent with the
average difference between the results obtained by RLS and LWPR,
suggesting that LWPR was able to learn the nonlinear component
generated by the off-axis effect.

4. Conclusions

This paper introduced locally weighted projection regression (LWPR),
a statistical learning algorithm, for applications of real-time learn-
ing in highly complex humanoid robots. The O(n) update complexity
of LWPR in the number of inputs n, together with its statistically
sound dimensionality reduction and learning rules allowed a reliable
and successful real-time implementation of various learning problems
in humanoid robotics, including inverse dynamics learning, inverse kine-
matics learning, and oculomotor learning. These results demark one of
the first times that complex internal models for model-based control
could be learned autonomously in real-time on sophisticated robotic
devices. We hope that algorithms like LWPR will allows us in the
near future to equip robots with massive on-line learning abilities such
that we come one step closer to realizing the dream of completely
autonomous humanoid robots.

References

An,C.H., Atkeson,C. & Hollerbach, J. (1988) Model Based Control of a Robot
Manipulator MIT Press.

Atkeson, C., Moore, A. & Schaal, S. (1997). Locally weighted learning. Artificial
Intelligence Review, 11, 76–113.

Bishop, C. (1995) Neural Networks for Pattern Recognition. Oxford Press.
Bullock, D., Grossberg, S., and Guenther F. H (1993). A self-organizing neural
model of motor equivalent reaching and tool use by a multijoint arm. Journal of
Cognitive Neuroscience, 5(4):408–435.

Cruse, H. and Brüwer, M. The human arm as a redundant manipulator: The control
of path and joint angles. Biological Cybernetics, 57:137–144, 1987.

Frank, I. E. & Friedman, J. H. (1993). A statistical view of some chemometric
regression tools. Technometrics, 35, 109–135.

Jordan, I.M. & Ruemelhart (1992) Supervised learning with a distal teacher,
Cognitive Science, pp. 307-354.

Kawato, M. (1990). Feedback-error-learning neural network for supervised motor
learning. In R. Eckmiller, editor, Advanced Neural Computers, pages 365–372.
North-Holland: Elsevier.

Liegeois, A. Automatic supervisory control of the configuration and behavior of
multibody mechnisms. IEEE Transactions on Systems, Man, and Cybernetics,
7(12):868–871, 1977.

AutRob.tex; 12/09/2001; 19:25; p.22

Statistical Learning for Humanoid Robots 23

Ljung, L. & Soderstrom, T. (1986) Theory and practice of recursive identification.
Cambridge MIT Press.

Sanger, T. D. (1989). Optimal unsupervised learning in a single layer liner
feedforward neural network. Neural Networks, 2, 459–473.

Saunders,C., Stitson, M.O., Weston,J., Bottou,L., Schoelkopf,B., Smola,A. (1998)
Support Vector Machine - Reference Manual. TR CSD-TR-98-03, Dept. of
Computer Science, Royal Holloway, Univ. of London.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3, 233–242.

Schaal, S. & Atkeson, C. G. (1998). Constructive incremental learning from only
local information. Neural Comp, 10, 2047–2084.

Schaal, S., Atkeson, C. G. & Vijayakumar, S. (2000). Real-Time Robot Learning
with Locally Weighted Statistical Learning. Proc. International Conference on
Robotics and Automation ICRA2000,288–293.

Schaal, S., Vijayakumar, S. & Atkeson, C. G. (1998). Local dimensionality reduction.
Proc. Neural Information Processing Systems 10,633–639.

Shibata, T. & Schaal, S. (2001). Biomimetic gaze stabilization based on feedback-
error-learning with nonparametric regression networks. Neural Networks. Vol.
14. No. 2., pp. 201–216.

Slotine, J. E. & Li, W. (1991). Applied Nonlinear Control. Prentice Hall.
Tevatia, G. and Schaal, S. Inverse kinematics for humanoid robots. In Proceedings

of the International Conference on Robotics and Automation (ICRA2000), San
Francisco, CA, Apr. 2000.

Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer, New York.
Vijayakumar, S. & Schaal,S. (2000). Locally Weighted Projection Regression : An

O(n) algorithm for incremental real time learning in high dimensional space.
Proc. International Conference on Machine Learning ICML2000, pp.1079-1086.

Wold, H. (1975). Soft modeling by latent variables: the nonlinear iterative partial
least squares approach. Perspectives in Probability and Statistics.

AutRob.tex; 12/09/2001; 19:25; p.23

AutRob.tex; 12/09/2001; 19:25; p.24

