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a b s t r a c t

An increasing number of projects in neuroscience require statistical analysis of high-dimensional data, as,
for instance, in the prediction of behavior from neural firing or in the operation of artificial devices from
brain recordings in brain–machine interfaces. Although prevalent, classical linear analysis techniques
are often numerically fragile in high dimensions due to irrelevant, redundant, and noisy information.
We developed a robust Bayesian linear regression algorithm that automatically detects relevant features
and excludes irrelevant ones, all in a computationally efficient manner. In comparison with standard
linear methods, the new Bayesian method regularizes against overfitting, is computationally efficient
(unlike previously proposed variational linear regression methods, is suitable for data sets with large
numbers of samples and a very high number of input dimensions) and is easy to use, thus demonstrating
its potential as a drop-in replacement for other linear regression techniques. We evaluate our technique
on synthetic data sets and on several neurophysiological data sets. For these neurophysiological data
sets we address the question of whether EMG data collected from arm movements of monkeys can
be faithfully reconstructed from neural activity in motor cortices. Results demonstrate the success of
our newly developed method, in comparison with other approaches in the literature, and, from the
neurophysiological point of view, confirms recent findings on the organization of the motor cortex.
Finally, an incremental, real-time version of our algorithm demonstrates the suitability of our approach
for real-time interfaces between brains and machines.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been growing interest in large scale
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analyses of brain activity, with respect to associated behavioral
variables. For instance, projects can be found in the area of
brain–machine interfaces, where neural firing is directly used
to control an artificial system like a robot (Chapin, Moxon,
Markowitz, & Nicolelis, 1999; Hochberg et al., 2006; Lebedev &
Nicolelis, 2006; Nicolelis, 2001; Nicolelis & Ribeiro, 2006; Taylor,
Tillery, & Schwartz, 2002), or where non-invasive brain signals
serve to either control a cursor on computer screen (Wolpaw
& McFarland, 2004), or to classify visual stimuli presented to
a subject (Haynes & Rees, 2005; Kamitani & Tong, 2004). In
such scenarios, the brain signals to be processed are typically
high dimensional, in the order of hundreds or thousands of
inputs, with large numbers of redundant and irrelevant signals.
Linear modeling techniques like linear regression are among
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the primary analysis tools for such data (Lebedev & Nicolelis,
2006; Musallam, Corneil, Greger, Scherberger, & Andersen, 2004;
Wessberg & Nicolelis, 2004). However, the computational problem
of data analysis not only involves data fitting, but also requires
that the model extracted from the data has good generalization
properties. This issue is crucial for predicting behavior from future
neural recordings, e.g., for continual on-line interpretation of brain
activity to control prosthetic devices, or for longitudinal scientific
studies of information processing in the brain. Surprisingly, robust
linear modeling of high-dimensional data is non-trivial, as the
danger of fitting noise and of encountering numerical problems
is high. Classical techniques like ridge regression, stepwise
regression, subset selection techniques, or Partial Least Squares
regression (Wold, 1975) are known to be prone to overfitting,
and may often require careful human supervision to ensure useful
results. Other methods such as Least Absolute Shrinkage and
Selection Operator (LASSO) regression (Tibshirani, 1996) attempt
to shrink certain regression coefficients to zero, resulting in
interpretable models that are sparse. However, LASSO regression
has an open parameter that needs to be set, using either n-fold
cross-validation or manual hand-tuning.

In this paper, we will focus on how to improve linear data
analysis for the high-dimensional scenarios described above,
with a view towards developing a ‘‘black box’’ approach that
automatically detects the most relevant input dimensions for
generalization and excludes other dimensions in a statistically
sound way. We are particularly interested in situations where the
data contains a very large quantity of samples and the number
of input dimensions is very high, as in brain–machine interfaces.
For this purpose, we investigate a full Bayesian treatment
of linear regression with automatic relevance detection (Neal,
1994) that is computationally efficient and suitable for large
amounts of very high-dimensional data. This algorithm can be
formulated in closed form with the help of a variational Bayesian
approximation, and it introduces ‘‘probabilistic backfitting’’ for
linear regression, a key component which contributes greatly
towards the algorithm’s computational efficiency. Besides several
synthetic data evaluations, we apply the algorithm, named
Variational Bayesian Least Squares (VBLS) (Ting et al., 2005), to the
reconstruction of EMG data from motor cortical firing from data
sets collected by Sergio and Kalaska (1998) and Kakei, Hoffman,
and Strick (1999, 2001). This data analysis addresses important
neurophysiological questions in terms of whether motor cortical
neurons can directly predict EMG traces (Bennett & Lemon,
1996; McKiernan, Marcario, Karrer, & Cheney, 1998; Morrow
& Miller, 2003; Todorov, 2000; Townsend, Paninski, & Lemon,
2006), whether motor cortices have a muscle-based topological
organization, andwhether information inmotor cortices should be
used to predict behavior in future brain–machine interfaces. Our
main focus in this paper is on the statistical analysis of these kinds
of data. Comparisons with classical linear analysis techniques and
a brute force combinatorial model search (which was executed on
a cluster computer) demonstrate that our VBLS algorithm indeed
achieves the ‘‘black box’’ quality of a statistical analysis technique
that requires no tuning of parameters by the user.

This paper describes in detail the VBLS algorithm and its
application to the EMG reconstruction problem by building and
extending our prior work in D’Souza, Vijayakumar, and Schaal
(2004) and Ting et al. (2005). We discuss the neurophysiological
implications of our analyses and present a real-time version of
VBLS in order to simulate an application in real-time brainmachine
interfaces.

2. High dimensional regression

Before developing our VBLS algorithm, it is useful to briefly
revisit classical linear regression techniques. Assuming there are
N observed data samples in the data set D = {xi, yi}Ni=1 (where
xi ∈ Rd×1 are inputs and yi are scalar outputs), the standardmodel
for linear regression is:

yi =

d∑
m=1

bmxim + ε (1)

where b is the regression vector made up of bm components, d
is the number of input dimensions, and ε is additive mean-zero
noise. The Ordinary Least Squares (OLS) estimate of the regression
vector is b =

(
XTX

)−1 XTy, where X ∈ RN×d consists of vectors
xi arranged in its rows and y ∈ RN×1 has coefficients yi. The
main problem with OLS regression in high-dimensional input
spaces is that the full rank assumption of

(
XTX

)−1
is often violated

due to underconstrained data sets. Ridge regression (Hoerl &
Kennard, 1970) can ‘‘fix’’ such problems numerically by stabilizing
the matrix inversion with a diagonal term

(
XTX + αI

)−1
, but

usually introduces uncontrolled bias. Additionally, if the input
dimensionality exceeds around 1000 dimensions, the matrix
inversion can become prohibitively computationally expensive.

Several ideas exist how to improve over OLS. First, stepwise
regression (Draper & Smith, 1981) can be employed. However,
stepwise regression has been strongly criticized for its potential
for overfitting and its inconsistency in the presence of collinearity
in the input data (Derksen & Keselman, 1992). To deal with
such collinearity directly, dimensionality reduction techniques
like Principal Components Regression (PCR) (Massey, 1965) are
useful. These methods retain directions in an input space with
large variance, regardless of whether the directions influence the
prediction (Schaal, Vijayakumar, & Atkeson, 1998), and can even
eliminate low variance inputs thatmay have high predictive power
for the outputs (Frank & Friedman, 1993). Another class of linear
regression methods is projection regression techniques, most
notably Partial Least Squares (PLS) regression (Wold, 1975). PLS
regression performs computationally inexpensive O(d) univariate
regressions along projection directions, chosen according to the
correlation between inputs and outputs. While slightly heuristic in
nature, PLS regression is a surprisingly successful algorithm for ill-
conditioned and high-dimensional regression problems, although
it also has a tendency towards overfitting (Schaal et al., 1998).
There are also more efficient methods for matrix inversion (Hastie
& Tibshirani, 1990; Strassen, 1969), but these methods assume
a well-condition regression problem a priori and degrade in the
presence of collinearities in inputs. Finally, there is a class of
sparsity inducing methods such as LASSO regression (Tibshirani,
1996) that attempt to shrink certain regression coefficients in
the solution to zero by using an L1 penalty norm (instead of
an L2 penalty norm used by ridge regression). These methods
are suitable for high-dimensional data sets, at the expense of
requiring an open parameter (i.e., a fixed bound on the penalty
norm) that needs to be set using cross-validation. Note that
previousmethods of sparse variational linear regression have been
proposed by Bishop (2006) and Tipping (2001), however these are
not computationally efficient and are unsuitable for large amounts
of high-dimensional data.

We will use some of the previously described methods for
comparison in the Evaluation section. In particular, we will
compare our proposed algorithm to the following methods: (i)
OLS regression, (ii) ridge regression with an empirically tuned
ridge value, (iii) stepwise regression, (iv) PLS regression and
(v) LASSO regression. In the next section, we will introduce
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Fig. 1. Graphical model for linear regression. Random variables are in circular
nodes, observed random variables are in double circles, and point estimated
parameters are in square nodes.

Fig. 2. Graphical model for Probabilistic Backfitting. Random variables are in
circular nodes, observed randomvariables are in double circles, and point estimated
parameters are in square nodes.

a linear regression algorithm in a Bayesian framework that
automatically regularizes against problems of overfitting (in
contrast, LASSO regression has an open parameter that requires
cross-validation in order to find its optimal value). Additionally,
the iterative nature of the algorithm – due to its formulation
as an Expectation-Maximization problem (Dempster, Laird, &
Rubin, 1977) – avoids the computational cost and numerical
problems of matrix inversions that is faced in high-dimensional
OLS regression and in Bishop (2006) and Tipping (2001). Thus,
VBLS addresses the two major problems of high-dimensional OLS
regression simultaneously. Note, however, that if accurate results
are needed (and computational resources are unlimited) for data
sets with fully relevant input dimensions, VBLS is not as efficient
as the matrix inversion in OLS. The advantage of VBLS arises
when dealing with high dimensional input spaces, serving as an
efficient and robust ‘‘automatic’’ regression method. Conceptually,
the algorithm can be interpreted as a Bayesian version of either
backfitting or Partial Least Squares regression.

3. Variational Bayesian least squares

Figs. 1–3 illustrate the progression of graphical models that we
need to develop a robust Bayesian version of linear regression.
Fig. 1 depicts the standard linear regression model. Part of
the inspiration for our algorithm comes from PLS regression,
motivated by the question of how to find maximally predictive
projections in input space, which is also part of various other

Fig. 3. Graphical model for Variational Bayesian Least Squares. Random variables
are in circular nodes, observed random variables are in double circles, and point
estimated parameters are in square nodes.

‘‘subset’’ selection techniques in regression (Wessberg & Nicolelis,
2004). Indeed, if we knew the optimal projection direction of the
input data, the entire regression problem could be solved by a
univariate regression between the projected data and the outputs:
this optimal projection direction is simply the true gradient
between inputs and outputs. Since we do not know this projection
direction,we nowencode its coefficients as hidden variables, in the
tradition of Expectation-Maximization (EM) algorithms (Dempster
et al., 1977). Fig. 2 shows the corresponding graphical model.
The unobservable variables zim (where i = 1, . . . ,N denotes
the index into the data set of N data points) are the result of
the input variables being projected on the respective projection
direction component (i.e., bm). Then, the zim’s are summed up to
form a predicted output yi. More formally, we canmodify the linear
regression model in Eq. (1) to become:

yi =

d∑
m=1

zim + εy (2)

zim = bmxim + εzm . (3)

For a probabilistic treatment with EM, wemake a standard normal
assumption of all distributions in form of:

yi|zi ∼ Normal
(
1Tzi, ψy

)
zim|xim ∼ Normal (bmxim, ψzm)

(4)

where 1 = [1, 1, . . . , 1]T. While this model is still identical to
OLS, notice that in the graphical model of Fig. 2, the regression
coefficients bm are behind the fan-in to the outputs yi. We call
this model Probabilistic Backfitting, since the resulting derived
update equation for the regression coefficient bm can be viewed as
a probabilistic version of backfitting. Given the dataD, we can view
this new regression model as an EM problem and maximize the
incomplete log likelihood log p(y|X) by maximizing the expected
complete log likelihood 〈log p(y, Z|X)〉, where:

log p(y, Z|X) = −
N
2

logψy −
1

2ψy

N∑
i=1

(
yi − 1Tzi

)2
−

N
2

d∑
m=1

logψzm −

d∑
m=1

1
2ψzm

(zim − bmxim)2 + const (5)

where Z ∈ RN×d consists of zim components. The resulting EM
updates require standard manipulations of normal distributions
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and are shown below:

E-step:

1T6z1 =

(
d∑

m=1

ψzm

)[
1 −

1
s

(
d∑

m=1

ψzm

)]
(6)

σ 2
zm = ψzm

(
1 −

1
s
ψzm

)
(7)

〈zim〉 = bmxi +
1
s
ψxm

(
yi − bTxi

)
(8)

M-step:

bm =

N∑
i=1

〈zim〉 xim

N∑
i=1

x2im

(9)

ψy =
1
N

N∑
i=1

(
yi − 1T

〈zi〉
)2

+ 1T6z1 (10)

ψzm =
1
N

N∑
i=1

(〈zim〉 − bmxim)2 + σ 2
zm (11)

where we define s = ψy +
∑d

m=1 ψxm and 6z is the covariance
matrix of z. It is very important to note that one EM update has
a computationally complexity of O(d), where d is the number
of input dimensions, instead of the O(d3) associated with OLS
regression. This efficiency comes at the cost of an iterative solution,
instead of a one-shot solution for b as in OLS. It can be proved
that this EM version of least squares regression is guaranteed to
converge to the same solution as OLS (D’Souza et al., 2004).

This new EM algorithm appears to only replace the matrix
inversion in OLS by an iterative method, as others have done with
alternative algorithms (Hastie & Tibshirani, 1990; Strassen, 1969).
However, the convergence guarantee of EM is an improvement
over previous approaches. The true power of this probabilistic
formulation becomes apparent when we add a Bayesian layer to
achieve robustness in face of ill-conditioned data.

3.1. Automatic feature detection

From a Bayesian point of view, the parameters bm should be
treated probabilistically as well, such that we can integrate them
out to safeguard against overfitting. For this purpose, as shown in
Fig. 3, we introduce precision variables αm over each regression
parameter bm, as previously done in Tipping (2001):

p(b|α) =

d∏
m=1

(αm

2π

) 1
2
exp

(
−
αm

2
b2m
)

p(α) =

d∏
m=1

baαmαm
Gamma(aαm)

α
(aαm−1)
m exp

(
−bαmαm

) (12)

where α ∈ Rd×1 consists of αm components. We now have
a mechanism that infers the significance of each dimension’s
contribution to the observed output y. The key quantity that
determines the relevance of a regression input is the parameter
αm. A priori, we assume that every bm has a mean zero distribution
with broad variance 1/αm. If the posterior value of αm turns out to
be very large after all model parameters are estimated (equivalent
to a very small variance of bm), then the corresponding distribution
of bm must be sharply peaked at zero. Such a posterior gives strong
evidence that bm is very close to 0 and that the regression input
xm has no contribution to the output. Thus, this Bayesian model

automatically detects irrelevant input dimensions and regularizes
against ill-conditioned data sets.

Even though Eq. (12) looks very similar to that of Tipping (2001)
and later work of Bishop (2006), our model has the key property
that it is computationally efficient, requiringO(d) per EM iteration.
In contrast, the methods of Bishop (2006) and Tipping (2001)
take O(d3) per EM iteration and O(N3), respectively, becoming
prohibitively expensive for large data sets with a very large input
dimensionality, d. It is the fast, efficient nature of our proposed
algorithm, Variational Bayesian Least Squares, that makes it
suitable for real-time analysis of very large amounts of very high-
dimensional data, as required in brain–machine interfaces. We
discuss this application in more detail in the Evaluation section.
The final model for VBLS has the following distributions:

yi|zi ∼ Normal
(
1Tzi, ψy

)
zim|bm, αm, xim ∼ Normal

(
bmxim,

ψzm

αm

)
bm|αm ∼ Normal

(
0,

1
αm

)
αm ∼ Gamma(aαm , bαm).

(13)

As a note, it should be observed that the Gaussian prior used above
for bm is a standard prior in Bayesian linear regression, e.g., Bishop
(2006). However, the Laplace prior could be used as well, and the
result, when used with MAP estimation, will be similar to LASSO.
We choose to not pursue this direction, but note that the Laplace
density can be re-written in a hierarchical manner as done above
by modeling the variance of bm as a Gamma distribution with one
hyperparameter, i.e., an exponential, as done by Figueiredo (2003).
Integrating out the hyperparameter gives the Laplace marginal
prior.

An EM-like algorithm (Ghahramani & Beal, 2000) can be used
to find the posterior updates of all distributions, where we
maximize the incomplete log likelihood log p(y|X) by maximizing
the expected complete log likelihood 〈log p(y, Z, b,α|X)〉:

log p(y, Z, b,α|X)

=

N∑
i=1

log p(yi|zi)+

N∑
i=1

d∑
m=1

log p(zim|bm, αm)

+

d∑
m=1

log p(bm|αm)+

d∑
m=1

log p(αm)

= −
N
2

logψy −
1

2ψy

N∑
i=1

(
yi − 1Tzi

)2
−

N
2

d∑
m=1

log
ψzm

αm

−

d∑
m=1

αm

2ψzm
(zim − bmxim)2

+

d∑
m=1

logαm −
1
2

d∑
m=1

αmb2m +

d∑
m=1

(
aαm,0 − 1

)
logαm

−

d∑
m=1

bαm,0αm + const (14)

where aαm,0 and bαm,0 are the initial parameter values that are set
to reflect our confidence in the prior distribution of bm. In order to
obtain a tractable posterior distribution over all hidden variables
b, zi and α, we use a factorial variational approximation of the true
posterior (Ghahramani & Beal, 2000): Q (α, b, Z) = Q (α, b)Q (Z).
Note that the connection from the αm to the corresponding zim
in Fig. 3 is an intentional design. Under this graphical model,
the marginal distribution of bm becomes a Student t-distribution,
allowing for traditional hypothesis testing (Gelman, Carlin, Stern,
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& Rubin, 2000). The minimal factorization of the posterior into
Q (α, b)Q (Z)would not be possible without this special design.

The variational Bayesian approximation used here allows us to
reach a tractable posterior distribution over all hidden variables,
such that we can proceed to infer the posterior distributions.
Variational Bayesian learning approximates the intractable joint
distribution over hidden states and parameters with a simpler
distribution, e.g., assuming independence between hidden states
and parameters such that the posterior distributions are factorized.
An exact Bayesian solution is not feasible since one would need
to compute the marginals of the joint posterior distribution—and
this is not analytically possible. For discussions on the quality of
variational Bayesian approximations and how they compare to the
true solution, please refer to Attias (2000), Ghahramani and Beal
(2000), Jaakkola (2000) and Jordan, Ghahramani, Jaakkola, and Saul
(1999). We will return to this point in the Discussion section.

After some algebraic manipulations, the final EM posterior
update equations become:
E-step:

6z =

(
1
ψy

11T
+ 9−1

z 〈A〉

)−1

= 9z 〈A〉
−1

−
9z 〈A〉

−1 11T9z 〈A〉
−1

ψy + 1T9z 〈A〉
−1 1

(15)

〈zi〉 = 6z

(
1
ψy

1yi + 9−1
z 〈A〉 〈B|A〉 xi

)
=

(
9z 〈A〉

−1 1
ψy + 1T9z 〈A〉

−1 1

)
yi

+

(
〈B|A〉 −

9z 〈A〉
−1 11T

〈B|A〉

ψy + 1T9z 〈A〉
−1 1

)
xi (16)

σ 2
bm|αm

=
ψzm

〈αm〉

(
N∑
i=1

x2im + ψzm

)−1

(17)

〈bm|αm〉 =

(
N∑
i=1

x2im + ψzm

)−1 ( N∑
i=1

〈zim〉 xim

)
(18)

âαm = aαm,0 +
N
2

(19)

b̂αm = bαm,0 +
1

2ψzm

 N∑
i=1

〈
z2im
〉
−

(
N∑
i=1

x2im + ψzm

)−1

×

(
N∑
i=1

〈zim〉 xim

)2
 (20)

〈αm〉 =
âαm
b̂αm

(21)

M-step:

ψy =
1
N

N∑
i=1

(
yi − 1T

〈zi〉
)2

+ 1T6z1 (22)

ψzm =
1
N

N∑
i=1

〈αm〉 (〈zim〉 − 〈bm|αm〉 xim)2 + 〈αm〉 σ 2
zm

+ 〈αm〉 σ 2
bm|αm

(
1
N

N∑
i=1

x2im

)
(23)

where 〈A〉, 〈B|A〉, 9z are diagonal matrices of 〈α〉, 〈b|α〉, ψz ,
respectively. 6z is a diagonal covariance matrix with a diagonal

vector of σ 2
z . Note that

〈
z2im
〉
= 〈zim〉

2
+ σ 2

zm , where σ 2
zm is the mth

term of the vector σ 2
z .

The hyperparameters of αm are learnt using EM, as shown by
Eqs. (19) and (20).We set the initial values of the hyperparameters,
aα,0 and bα,0, in an uninformative way and use values of aαm,0 =

10−8 and bαm,0 = 10−8 for allm = 1, . . . , d. This means that initial
value ofαm is 1, with high uncertainty, i.e.,αm has a rather flat prior
distribution.

Note that the update equation for 〈bm|αm〉 can be rewritten as:

〈bm|αm〉
(n+1)

=


N∑
i=1

x2im

N∑
i=1

x2im + ψzm

 〈bm|αm〉
(n)

+
ψzm

sαm

N∑
i=1

(
yi − 〈b|α〉

(n)T xi
)
xim

N∑
i=1

x2im + ψzm

. (24)

Eq. (24) demonstrates that in the absence of a correlation be-
tween the current input dimension and the residual error, the first
term causes the current regression coefficient to decay. The result-
ing regression solution regularizes over the number of retained
inputs in the final regression vector, performing a functional-
ity similar to Automatic Relevance Determination (ARD) (Neal,
1994). The update equations of VBLS have an algorithmic com-
plexity of O(d) per EM iteration, making it suitable for real-time
analysis of large amounts of high-dimensional data—unlike previ-
ously proposed computationally prohibitive sparse linear regres-
sion methods that require O(d3) per EM iteration (Bishop, 2006)
or O(N3) (Tipping, 2001). One can further show that the marginal
distribution of all bm is a t-distribution with t = 〈bm|αm〉 /σbm|αm
and 2âα degrees of freedom, which allows a principled way of
determining whether a regression coefficient was excluded by
means of standard hypothesis testing. Thus, Variational Bayesian
Least Squares (VBLS) regression is a computationally efficient, full
Bayesian treatment of the linear regression problem and is suitable
for large amounts of high-dimensional data.

3.2. Pseudocode of variational Bayesian least squares

The pseudocode for VBLS is listed in Algorithm 1. To know
when to stop iterating through the EM-based algorithm, we
should monitor the incomplete log likelihood and stop when the
value appears to have converged. However, since the calculation
of the true posterior distribution Q (α, b, Z) is intractable, we
cannot determine the true incomplete log likelihood. Hence, for
the purpose of monitoring the incomplete log likelihood in the
EM algorithm, we monitor a lower bound of the incomplete log
likelihood instead. In the derivation of VBLS, we approximated
Q (θ), where θ = {α, b, Z}, as Q (α, b)Q (Z). Using this variational
approximation, we can derive the lower bound to the incomplete
log likelihood (where φ =

{
ψy, ψz

}
) to be:

log p(y|X;φ)

≥

∫
Q (θ) log

p(y, θ|X;φ)

Q (θ)
dθ =

∫
Q (θ) log p(y, θ|X;φ)dθ

−

∫
Q (θ) logQ (θ)dθ

≥ 〈log p(y, θ|X;φ)〉Q (θ) −

∫
Q (θ) logQ (θ)dθ (25)
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where Eq. (25) simplifies to:

log p(y|X;φ) ≥ −
N
2

logψy

−
1

2ψy

N∑
i=1

(
y2i − 2yi1T

〈zi〉 + 1T 〈zizTi 〉 1)−
N
2

d∑
m=1

logψzm

−

d∑
m=1

〈αm〉

2ψzm

N∑
i=1

(〈
z2im
〉
− 2 〈zim〉 〈bm|αm〉 xim +

〈
(bm|αm)

2〉 x2im)
−

1
2

d∑
m=1

〈αm〉
〈
(bm|αm)

2〉
−

N − 1
2

d∑
m=1

log b̂αm − âαm

−
1
2
log |6−1

z | −

d∑
m=1

log b̂αm

+
1
2

d∑
m=1

〈αm〉
(
σ 2
bm|αm

+ 1
)
+ const. (26)

We stop iterating when the lower bound to the incomplete log
likelihood has converged (i.e., when a certain likelihood tolerance,
t , has been reached). Additionally, note that the input and output
data are assumed to be centered (i.e. have a mean of 0) before we
analyze the data set with VBLS.

Algorithm 1 Pseudocode for VBLS
0: Initialization: aα,0 = 10−81, bα,0 = 10−81; threshold value

for lower bound to the incomplete log likelihood, t = 10−6

1: Start EM iterations:
2: repeat
3: Perform the E-step: Calculate Eqs. (15)–(20)
4: Perform the M-step: Calculate Eqs. (22) and (23)
5: Monitor the lower bound to the incomplete log likelihood,

Eq. (26), to see if the likelihood tolerance t has been reached
6: until convergence of Eq. (26)

4. Evaluation

We now turn to the application and evaluation of VBLS in
the context of predicting EMG data from neural data recorded in
primary motor (M1) and premotor (PM) cortices of monkeys. The
key questions addressed in this application were (i) whether EMG
data can be reconstructed accurately with good generalization,
(ii) how many neurons contribute to the reconstruction of each
muscle, and (iii) how well the VBLS algorithm compares to other
analysis techniques. The underlying assumption of this analysis
was that the relationship between cortical neural firing andmuscle
activity is approximately linear.

Before applying VBLS to real data, however, we first run it on
synthetic data sets where ‘‘ground truth’’ is known, in order to
better evaluate its performance in a controlled setting.

4.1. Synthetic data

4.1.1. Data sets
We generated random input training data consisting of 100

dimensions, 10 of which were relevant dimensions. The other 90
were either irrelevant or redundant dimensions, as we explain
below. Each of the first 10 input dimensions was drawn from a
Gaussian distribution with some random covariance. The output
data was then generated from the relevant input data using the
vector b ∈ R10×1, where each coefficient of b, bm, was drawn from
a Normal(0, 100) distribution, subject to the fact that it cannot be

zero (since this would indicate an irrelevant dimension). Additive
mean-zero Gaussian noise of varying levels was added to the
outputs.

Noise in the outputs was parameterized with the coefficient of
determination, r2, of standard linear regression, defined as:

r2 =

(
σ 2
y − σ 2

res

)
σ 2
y

where σ 2
y is the variance of the outputs and σ 2

res is the variance of
the residual error. We added noise scaled to the variance of the
noiseless outputs ȳ such that σ 2

noise = cσ 2
ȳ , where c =

1
r2

− 1.
Results are quantified as normalized mean squared errors (nMSE),
that is, the mean squared error on the test set normalized by
the variance of the outputs of the test set. Note that the best
normalized mean squared training error that can be achieved by
the learning system under this noise level is 1 − r2, unless the
system overfits the data. We used a value of r2 = 0.8 for high
output noise and a value of r2 = 0.9 for lower output noise.

A varying number of redundant data vectors was added to the
input data, generated from random convex combinations of the
10 relevant vectors. Finally, we added irrelevant data columns,
drawn from a Normal(0, 1) distribution, until a total of 100
input dimensions was reached, generating training input data that
contained irrelevant and redundant dimensions.

We created the test data set in a similar manner except that
the input data and output data were left noise-free. For our
experiments, we considered a synthetic training data set with
N = 1000 data samples and a synthetic test data set with 20 data
samples. We examined the following four different combinations
of redundant, v, and irrelevant, u, input dimensions in order to
better analyze the performance of the algorithms on different data
sets:

(i) v = 0, u = 90 (all the 90 input dimensions are irrelevant)
(ii) v = 30, u = 60
(iii) v = 60, u = 30
(iv) v = 90, u = 0 (all the 90 input dimensions are redundant)

4.1.2. Methods
We compared VBLS to four other methods that were previously

described in Section 2: (i) ridge regression, (ii) stepwise regression,
(iii) PLS regression and (iv) LASSO regression. For ridge regression,
we introduced a small ridge parameter value of 10−10 to avoid
ill-conditioned matrix inversions. We used Matlab’s ‘‘stepwisefit’’
function to run stepwise regression. The number of PLS projections
for each data set fit was found by leave-one-out cross-validation.
Finally, we chose the optimal tuning parameter in LASSO
regression using k-fold cross-validation.

4.1.3. Results
For evaluation, we calculated the prediction error on noiseless

test data, using the learned regression coefficients from each
technique. Results are quantified as normalized mean squared
errors (nMSE). Fig. 4 shows the average prediction error for
noiseless test data, given training data where the output noise is
either low (r2 = 0.9) or high (r2 = 0.8).

All the algorithms were executed on 10 randomly generated
sets of data. The predictive nMSE results reported in Fig. 4 were
averaged over the 10 trials. Note that the best training nMSE values
possible under the two noise conditions are 0.1 for the low noise
case and 0.2 for the high noise case. The training nMSE values
were omitted for both graphs, since all algorithms attained training
errors that were around the lowest possible values.

From Figs. 4(a) and (b), we see that regardless of output
noise level, VBLS achieves either the lowest predictive nMSE
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(a) Average prediction error for training data with low output noise (r2 = 0.9). (b) Average prediction error for training data with high output noise (r2 = 0.8).

Fig. 4. Average normalized mean squared prediction error for synthetic 100 input-dimensional data, with a varying level of output noise in the training data, averaged over
10 trials. There are 10 relevant input dimensions and a total of 90 redundant and irrelevant input dimensions. The number of redundant dimensions is denoted by v, and
the number of irrelevant dimensions is u.

Fig. 5. Average normalized mean squared prediction error for synthetic non-
Normal 100 input-dimensional data, with an output noise of r2 = 0.9999 in the
training data averaged over 10 trials. There are 10 relevant input dimensions and
a total of 90 redundant and irrelevant input dimensions. The number of redundant
dimensions is denoted by v, and the number of irrelevant dimensions is u. Each
relevant dimension of the training data is drawn from a multi-modal distribution
(a mixture of Gaussian distributions), and the output noise is drawn from a Student
t-distribution.

value or a predictive nMSE value comparable with that of the
other four algorithms. In general, as the number of redundant
input dimensions increases and the number of irrelevant input
dimensions decreases, the prediction error improves (i.e., it
decreases). This may be attributed to the fact that redundancy in
the input data provides more ‘‘information’’, making the problem
easier to solve.

The performance of stepwise regression degrades, as the
number of redundant dimensions increases, as shown in Fig. 4(a),
due to its inability to cope with collinear data. LASSO regression
appears to perform quite well, compared with PLS regression and
ridge regression. This is unsurprising, given it is known for its
ability to produce sparse solutions.

In summary, we can confirm that VBLS performs very well—
as well as or better than classical robust regression methods
(such as LASSO) on synthetic tests. Interestingly, PLS regression
and ridge regression are significantly inferior in problems that
have a large number of irrelevant dimensions. Stepwise regression
has deteriorated performance as soon as co-linear inputs are
introduced.

4.1.4. Non-normal synthetic data
We can also examine synthetic data sets which do not

correspond to the generative model (i.e., data and noise that are
not generated fromNormal distributions) in order to evaluate how
dependent our model is on the Normal prior distributions that we
assumed.

Synthetic data is generated in a similar fashion as in Sec-
tion 4.1.1, with 100 dimensions—10 of which are relevant dimen-
sions. The other 90 dimensions are chosen to be either irrelevant
or redundant. The first 10 relevant input dimensions were gener-
ated from a multi-modal distribution, instead of a Normal distri-
bution. Specifically, each of the relevant 10 input dimensions was
drawn from a sum/mixture of 10 Gaussian distributions, with each
Gaussian distribution having a different mean and variance, i.e.,
xm ∼

∑N
p=1 Normal(µp, σ

2
p ), form = 1, . . . , 10where σp is drawn

randomly from a uniform distribution between 0 and 2 and µp is
drawn similarly from a uniform distribution between 0 and 2. The
second difference between this non-Normal synthetic data set and
the data set used in Section 4.1.1 is the additive output noise. In-
stead of Gaussian distributed noise, noise drawn from a Student
t-distribution was added to the outputs. We chose a noise level of
r2 = 0.9999 for the output noise, such that the noise was scaled
to the variance of the noiseless outputs ȳ. Redundant and irrele-
vant data vectors were added to the input data in a similar way
as described in Section 4.1.1. The test data was created in a similar
manner, except the input andoutput datawere left noise-free. As in
Section4.1.1,we considered synthetic trainingdatawithN = 1000
data samples and a synthetic test data set with 20 data samples.

Fig. 5 shows the prediction nMSE values, averaged over 10 trials.
We can observe that both VBLS and LASSO outperform the other
classical regression methods on non-Normal synthetic data sets.
This figure demonstrates that even for data sets that do not follow
the Normal prior distributions assumed in our generative model,
VBLS continues to perform quite competitively.

4.2. EMG prediction from neural firing

4.2.1. Data sets
We investigated data from two different neurophysiological

experiments. In the first experiment by Sergio and Kalaska (1998),
a monkey moved a manipulandum in a center-out task in eight
different directions, equally spaced in a horizontal planar circle of
8 cm radius. A variation of this experiment held themanipulandum
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rigidly in place, while the monkey applied isometric forces in the
same eight directions. In both conditions (whether the monkey
was applying a movement or an isometric force), feedback was
given through visual display on a monitor. Neural activity for 71
M1 neurons was recorded in all conditions, along with the EMG
outputs of 11 muscles.1 After preprocessing, we obtained a total
of 2320 data samples for each neuron/muscle pair, collected over
all eight directions and for both movement and isometric force
conditions. Each data sample consisted of the average firing rates
from a particular neuron (averaged over a window of 10 ms) and
the corresponding EMG activation2 from a particular muscle. A
sampling interval of 10 ms was used. For each sample in this data
set, a delay of 50 ms between M1 cortical neural firing and EMG
muscle activationwas empirically chosen, based on estimates from
measurements.

The second experiment, conducted by Kakei et al. (1999, 2001),
involved amonkey trained to performeight different combinations
of wrist flexion-extension, and radial-ulnar movements while in
three different arm postures (pronated, supinated and midway
between the two). These experiments resulted in two data sets.
For the first, the EMG outputs of 7 contributing muscles3 were
recorded, along with the neural data of 92 M1 neurons at all
three wrist postures, resulting in 2616 data samples for each
neuron/muscle pair. As for the Sergio & Kalaska data set, each
data sample consisted of the average firing rates from a particular
neuron (averaged over a window of 10 ms) and the corresponding
EMG activation from a particular muscle. A sampling interval of
10 ms was used. For each sample in this data set, a delay of 20 ms4
between M1 cortical neural firing and EMG muscle activation was
chosen empirically, based on estimates from measurements. The
second data set also included EMG outputs of the same 7 muscles,
but this time contained the recorded spiking data of 72 PMneurons
at the three wrist postures. After preprocessing, this second data
set had 2592 data samples for each neuron/muscle pair. For each
sample, a delay of 30 ms5 between PM cortical neural firing and
EMG muscle activation was assumed.

4.2.2. Methods
As a baseline comparison, EMG reconstruction was obtained

through a combinatorial search over possible regression models.
This approach served as our baseline study (referred to as
ModelSearch in the figures). A particular model is characterized by
a subset of neurons that is used to predict the EMG data. For the
Sergio & Kalaska data, given 71 neurons, the number of possible
models that exist for a particular muscle is:
71∑

m=1

(
71
m

)
.

1 The 11 armmuscles analyzed included the (1) surpraspinatus, (2) infraspinatus,
(3) subscapularis, (4) rostral trapezius, (5) caudal trapezius, (6) posterior deltoid, (7)
medial deltoid, (8) anterior deltoid, (9) triceps medial head, (10) brachialis and (11)
pectoralis muscles.

2 EMG was recorded from pairs of shoulder and elbow muscles, implanted
percutaneously with Teflon-coated single-stranded stainless steel wires. EMG
activity was amplified, rectified and integrated (over 10 ms bins) to generate
summed histograms of activity. The EMG data had no physically meaningful units.

3 EMG was recorded using pairs of single-stranded stainless steel wires placed
transcutaneously into each muscle. The 7 arm muscles considered were the (1)
extensor carpi ulnaris (ECU), (2) extensor digitorum 2 and 3 (ED23), (3) extensor
digitorum communis (EDC), (4) extensor carpi radialis brevis (ECRB), (5) extensor
carpi radialis longus (ECRL), (6) abductor pollicis longus (APL), and (7) flexor carpi
radialis (FCR) muscles.

4 The results of our analyses are insensitive to a delay in the range of 20–60 ms,
since there was only a very small numerical difference between the quality of the
fit of the data in this interval. Delays of 50 ms or higher are physiologically more
plausible.

5 Within a delay range of 30–80 ms, there is no real difference in the quality of
fit of our analyses.

Since the order of the contributing neurons is not important, the
above expression lists the combinations instead of permutations
of neurons. This value is too large for an exhaustive search.
Therefore, we considered only possible combinations of up to 20
neurons, which required several weeks of computation on a 30-
node cluster computer. The optimal predictive subset of neurons
was determined from a series of 8-fold cross-validation sets.

For both data sets, the cross-validation procedure used in
the baseline study was used in order to determine the optimal
subset of neurons. Cross-validation was done in the context of the
behavioral experiments and not in a statistically randomized way.
For the Sergio & Kalaska experiment, the data was separated into
different force categories (isometric force versus force generated
duringmovement) andmovement directions in space. Thus, cross-
validation asked the meaningful question of whether isometric
and movement conditions are predictive of each other and
whether there is spatial generalization. Similarly, for the Kakei
et al. experiment, data was separated into directional movements
at the wrist (supinated, pronated and midway between the two
wrist movements) and directional movements in space, which
again allowed cross-validation to make meaningful statements
about generalization over postures and space.

Fig. 6 shows how these 8 cross-validation sets are constructed
from the Sergio & Kalaska data. This baseline study (i.e., Mod-
elSearch) served as a comparison for ridge regression, stepwise
regression, PLS regression, LASSO regression and VBLS. These five
algorithms used the same validation sets employed in the baseline
study. Again, as described in Section 4.1.2, ridge regressionwas im-
plemented using a small ridge regression parameter of 10−10, in
order to avoid ill-conditioned matrices. We used Matlab’s ‘‘step-
wisefit’’ to run stepwise regression, and the number of PLS projec-
tions for each data fit was found by leave-one-out cross-validation.
The average normalized mean squared error values depicted in
Fig. 9(a) demonstrate how well each algorithm performs, averag-
ing the generalization performances over all the cross-validation
sets from Fig. 6.

The average number of relevant neurons6 (i.e., not including
irrelevant neurons and neurons providing redundant information),
shown in Fig. 11(a), was calculated by averaging over the number
of relevant neurons in each of the 8 training sets in Fig. 6.

The final set of relevant neurons, used in Fig. 13(a) to calculate
the percentage match of relevant neurons relative to those
found by the baseline study (ModelSearch), was reached for each
algorithm (except VBLS) by taking the common neurons found to
be relevant over the 8 cross-validation sets. The relevant neurons
found by VBLS and reported in Fig. 13(a) were obtained by using
the entire data set, since no cross-validation procedure is required
by VBLS (i.e., dividing the data into separate training and test sets
is not necessary). As with all Bayesian methods, VBLS performs
more accurately as the data size increases, without the danger of
overfitting. Inference of relevant neurons in PLS was based on the
subspace spanned by the PLS projections, while relevant neurons
in VBLS were inferred from t-tests on the regression parameters,
using a significance of p < 0.05. Stepwise regression determined
the number of relevant neurons from the inputs thatwere included
in the final model. Note that since ridge regression retained all
input dimensions, this algorithm was omitted in relevant neuron
comparisons.

Analogous to the first data set, a combinatorial analysis was
performed on the Kakei et al. M1 neural and PM neural data sets

6 Relevant neurons are those that contribute to the regression result in a
statistically sound way, according to a t-test with p < 0.05. It should be noted
that in noisy data, two neurons that carry the same signal, but have independent
noise will usually both remain significant in our algorithm, as the combined signal
of both neurons helps to average out the noise in the spirit of population coding.
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(a) Legend.

(b) Cross-validation set 1. (c) Cross-validation set 2.

(d) Cross-validation set 3. (e) Cross-validation set 4.

(f) Cross-validation set 5. (g) Cross-validation set 6.

(h) Cross-validation set 7. (i) Cross-validation set 8.

Fig. 6. Details of how the 8 cross-validation sets are created from the Sergio & KalaskaM1neural data set. For each type of force applied by themonkey to themanipulandum,
there are 8 possible directions that themanipulandumcould have beenmoved. Each circle shown above is partitioned into 8 equal portions, corresponding to the 8 directional
movements and numbered in increasing order (clockwise) starting from 1.

in order to determine the optimal set of M1 and PM neurons
contributing to each muscle (i.e. producing the lowest possible
prediction error) in a series of 6-fold cross-validation sets. Figs. 7
and 8 show the 6 cross-validation sets used for the M1 and PM
neural data sets. PLS, stepwise regression, ridge regression and
VBLSwere applied using the same cross-validation sets, employing
the same procedure described for the Sergio & Kalaska data set. The
average normalized mean squared error values shown in Figs. 9(b)
and 10 illustrate the generalization performance of each algorithm,
averaged over all the cross-validation sets shown in Figs. 7 and
8.7 The average number of relevant neurons shown in Figs. 11(b)
and 12 was calculated by averaging over the number of relevant
neurons found in each of the 6 training sets from Figs. 7 and 8. As
for the Sergio & Kalaska data set, the final set of relevant neurons,
used in Figs. 11(b) and 12, was obtained for each algorithm (except
VBLS) by taking the common neurons found to be relevant over the
6 cross-validation sets.

4.2.3. Results
Figs. 9 and 10 show that VBLS resulted in a generalization

error, comparable to that produced by ModelSearch (i.e., the
baseline study). In the Kakei et al. M1 and PM neural datasets,
all algorithms performed similarly, as we see on the right hand
side of Figs. 9(b) and 10. However, ridge regression, stepwise
regression, PLS regression and LASSO regression performed far
worse on the Sergio & Kalaska M1 neural dataset, with ridge
regression attaining the worst error, as we see on the right

7 Note that the partitioning of the data into training and test cross-validation
sets was essentially an intuitive process that tried to use insights from the different
experimental conditions in which the data was collected.

hand side of Fig. 9(a). Such performance is typical for traditional
linear regression methods on ill-conditioned high-dimensional
data, motivating the development of VBLS.

Interestingly, in Fig. 9(b), we observe that the prediction errors
of ridge regression and of the baseline study (i.e. ridge regression
using a selected subset of M1 neurons) are quite similar for
the Kakei et al. M1 neural data set. This suggests that, for this
particular data set, there is little advantage in performing a time-
consuming manual search for the optimal subset of neurons. A
similar observation can bemade for the Kakei et al. PM neural data
set when examining Fig. 10, although this effect is less pronounced
in the PM neural data set. In contrast, Fig. 9(a) shows a sharp
difference between the predictive error values of ridge regression
and the baseline study’s combinatorial-like model search. This
may be attributed to the fact that the Sergio & Kalaska M1 neural
data set is somehow much richer and hence, more challenging to
analyze.

The average number of relevant M1 neurons found by VBLS
was slightly higher than the baseline study, as seen in Fig. 11.
This is unsurprising, since the baseline studies did not consider all
possible combination of neurons. For example, the baseline study
for the Sergio & Kalaska data set considered possible combinations
of up to only 20 neurons, instead of the full set of 71 neurons. In
particular, notice that in Figs. 11(b) and 12, small amounts of the
total 92 M1 neurons and 72 PM neurons were found to be relevant
by the baseline study for certain muscles (e.g., muscles 1, 6 and 7).

We compared the relevant neurons identified by each algorithm
with those found by the baseline combinatorial-like model search,
in an attempt to evaluate how well each algorithm performed in
comparison with the model search approach. Table 1 shows the
percentage of neuron matches found by each algorithm, averaged
over all the muscles of the data set. The percentage of neuron
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(a) Legend.

(b) Cross-validation set 1.

(c) Cross-validation set 2.

(d) Cross-validation set 3.

(e) Cross-validation set 4.

(f) Cross-validation set 5.

(g) Cross-validation set 6.

Fig. 7. Details of how the 6 cross-validation sets are created from the Kakei et al. M1 neural data set. For each of the three wrist positions, there are 8 possible directional
movements. Each circle shown above is partitioned into 8 equal sections, corresponding to the 8 directional movements and numbered in increasing order (clockwise)
starting from 1.

Table 1
Percentage of neuron matches found by each algorithm, as compared to those found by the baseline study (ModelSearch), averaged over all muscles in each data set

STEP (%) PLS (%) LASSO (%) VBLS (%)

Sergio and Kalaska (1998) M1 neural data set 7.2 7.4 6.4 94.2
Kakei et al. (1999) M1 neural data set 65.1 42.9 80.6 94.4
Kakei et al. (1999) PM neural data set 22.9 14.2 44.5 91.5

The percentage of relevant neuron matches for an algorithm is calculated by considering the list of relevant neurons found by the baseline study. The number of neurons in
this list that the algorithm was successfully at identifying as relevant was counted, and the percentage of neuron matches calculated using this value.

matches was calculated by considering the list of relevant neurons
found by the baseline study. The number of neurons in this list
that the algorithm was successful at identifying as relevant was
counted, and the percentage of relevant neuron matches was
calculated using this value.

Table 1 shows that the relevant neurons identified by VBLS
coincided at a very high percentage with those of the baseline
model, while stepwise and PLS regression had inferior outcomes.
This table illustrates that VBLS was able to reproduce comparable
results to a combinatorial-like model search approach. However,
the main advantage of VBLS arises in its speed: VBLS took 8 h

for all validation sets on a standard PC, while the model search
took weeks on a cluster computer. LASSO regression matched a
high percentage of the relevant M1 and PM neurons in the Kakei
et al. data set, but fared far worse on the Sergio & Kalaska data
set. These percentage values for the Kakei et al. data sets are
perhaps inflated and should be given less consideration, since the
numbers of relevant M1 and PM neurons found by the baseline
study are relatively small for certain muscles. Figs. 13(a), (b) and
14 show the detailed breakdown of percentageM1 and PM neuron
matches for each algorithm on each muscle. The consistent and
good generalization properties of VBLS on all neural data sets, as
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(a) Legend.

(b) Cross-validation set 1.

(c) Cross-validation set 2.

(d) Cross-validation set 3.

(e) Cross-validation set 4.

(f) Cross-validation set 5.

(g) Cross-validation set 6.

Fig. 8. Details of how the 6 cross-validation sets are created from the Kakei et al. PM neural data set. For each of the three wrist positions, there are 8 possible directional
movements. Each circle shown above is partitioned into 8 equal sections, corresponding to the 8 directional movements and numbered in increasing order (clockwise)
starting from 1.

(a) Average error on Sergio and Kalaska (1998) M1 neural data set. (b) Average error on Kakei et al. (1999) M1 neural data set.

Fig. 9. Normalized mean squared error for M1 neurons, averaged over all cross-validation sets and over all muscles. Fig. 6 shows the 8 cross-validation sets used in the
Sergio and Kalaska (1998) M1 neural data set, and Fig. 7 shows the 6 cross-validation sets used for the Kakei et al. (1999) M1 neural data set.
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Fig. 10. Average normalizedmean squared error for PM neurons, averaged over all
6 cross-validation sets shown from Fig. 8 and over all muscles. Results are shown
for the Kakei et al. (1999) PM neural data set.

shown in Figs. 9(a), (b) and 10, suggests that the Bayesian approach
of VBLS sufficiently regularizes the participating neurons such that
no overfitting occurs, despite finding a larger number of relevant
neurons.

One could argue that the results of Table 1 are not so mean-
ingful, given that VBLS finds a large number of relevant neurons.
However, we should add that LASSO regression also finds a high
number of relevant neurons, especially for the Kakei M1 and PM
neural datasets, as shown in Figs. 11(b) and 12. In some cases (for
the PM neural data set), LASSO regression finds more relevant neu-
rons than VBLS. Regardless, the percentage match found by LASSO
was lower than that found by VBLS (80.6% and 44.5% on the Kakei
M1 and PM data sets for LASSO compared to 94.4% and 91.5% for
VBLS). The percentagematch criterion seems to be have high corre-
lation with the quality of generalization of each of the algorithms.

In general, VBLS achieved comparable performance with the
baseline study when reconstructing EMG data from M1 or PM
neurons. Note that VBLS is an iterative statistical method, which
performs slower than classical ‘‘one-shot’’ linear least squares
methods (i.e., on the order of several minutes for the data sets in
our analyses). Nevertheless, it achieves comparable results with
our combinatorial model search, while performing at much faster
speeds.

Fig. 12. Average number of relevant PM neurons found over the 6-fold cross-
validation sets from Fig. 8 for Kakei et al. data. Results are shown for each muscle.

4.3. Real-time analysis for brain–machine interfaces

Due to its computationally efficient nature, the VBLS algorithm
presented in Algorithm1 lends itself to scenarioswhere fast, online
learning with large amounts of high-dimensional data is required,
such as real-time brain–machine interfaces. Previous work by Sato
and Ishii (2000) and Sato (2001) has shown that an online version
of theVariational Bayes framework can be derived, such that online
model selection canbedonewith guaranteed convergence. A scalar
discount factor or forgetting rate is typically introduced in order to
forget estimates that were calculated earlier (and hence, were less
accurate). Sato and Ishii (2000) and Sato (2001) introduce a time-
dependent schedule for the discount factor and prove convergence
of the online EM-based algorithm. Since the main focus of this
manuscript is on the batch form of the algorithm, we will show
only a proof-of-concept and use a constant-valued discount factor
in order to demonstrate that the batch VBLS algorithm can be
translated into incremental form.We leave the detailed theoretical
development of the online version of the algorithmwith a discount
factor schedule for another paper.

In particular, we introduce a forgetting rate, 0 ≤ λ ≤ 1, to
exponentially discount data collected in the past, as done in Ljung
and Soderstrom (1983). The forgetting rate enters the algorithm
by accumulating sufficient statistics of the batch algorithm in an
incremental way. We can then extract the sufficient statistics by
examining the batch EMequations, Eqs. (15)–(23). The incremental

(a) Average number of relevant M1 neurons found for Sergio and
Kalaska (1998) M1 neural data set.

(b) Average number of relevant M1 neurons found for Kakei et al.
(1999) M1 neural data set.

Fig. 11. Average number of relevant M1 neurons found over all the 8 cross-validation sets from Fig. 6 (for Sergio & Kalaska data) and over all the 6 cross-validation sets
from Fig. 7 (for Kakei et al. data). Results are shown for each muscle in each data set.
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(a) Percentage of M1 neuron matches for the Sergio & Kalaska data set. (b) Percentage of M1 neuron matches for the Kakei et al. data set.

Fig. 13. Percentage of M1 neuron matches found by each algorithm, as compared with those found by the baseline study (ModelSearch), shown for each muscle in the
Sergio & Kalaska data set and Kakei et al. data set.

Fig. 14. Percentage of PM relevant neuron matches found by each algorithm, as
compared to those found by the baseline study (ModelSearch), shown for each
muscle in the Kakei et al. data set.

EM update equations for the kth time step, when data sample
{xk, yk} is available, are then:

E-step:
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(a) Coefficient of determination, r2 , for batch VBLS and real-time VBLS,
run on the entire Sergio & Kalaska data set.

(b) Number of relevant M1 neurons found by batch VBLS and real-time
VBLS using the entire Sergio & Kalaska data set.

Fig. 15. Coefficient of determination values, r2 = 1 − nMSE, and number of relevant neurons found by VBLS—both the batch and real-time versions. For the real-time,
incremental version of VBLS, the relevant neurons found in the last time step is shown.
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(a) Legend.

(b) Observed vs. predicted EMG traces under isometric force conditions for the infraspinatus muscle, given
M1 neural firing.

Fig. 16. Observed vs. predicted EMG traces under isometric force conditions for the infraspinatus muscle, from the Sergio & Kalaska data set. The center plot shows the
trajectories in eight different directions (in the (x, y) plane) taken by the hand. This figure is taken from Sergio & Kalaska. Each of the eight plots surrounding this center plot
shows EMG traces over time for each hand trajectory, illustrating the following: (i) the observed averaged EMG activity, (ii) the predicted EMG activity, as obtained by VBLS
using the entire data set (VBLS-full), and (iii) the predicted EMG activity, as obtained VBLS using only movement data for fitting (VBLS-cv).
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where (6z)k is 6z at time step k (and similarly, for all the other
parameter values) and the sufficient statistics are:
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with certain sufficient statistics discounted by λ, as necessary.
Note that both neural data sets are inherently real-time data—

collected online, stored, and then analyzed in batch form (i.e., a
sampling interval is used, and a delay between neural firing and
EMG activity is empirically chosen in order to extract the data
samples to be used in the batch form of the data). As a result, in
the real-time simulations, we took the batch form of the data and
presented it sequentially, one data sample at each time step.

We applied the real-time version of VBLS on the Sergio &
Kalaska data set, since this was the more interesting of the three
presented in Section 4.2.1. We used a forgetting rate of λ =

0.999, assumed each sample of the data set arrived sequentially
at different time steps, and iterated through the incremental VBLS
equations (27)–(36) twice for each time step.

Fig. 15(a) shows the coefficient of determination values, r2
(where r2 = 1 − nMSE), for both the batch and real-time versions
of VBLS on the entire Sergio & Kalaska data set. Fig. 15(b) shows the
number of relevantM1 neurons found by batch VBLS and real-time
VBLS for the same data set. For the real-time version of VBLS, the r2
values and relevant neurons reportedwere from the last time step.
We can see from both figures that the real-time and batch versions
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(a) Legend.

(b) Observed vs. predicted EMG traces under movement force conditions for the infraspinatus muscle, given
M1 neural firing.

Fig. 17. Observed vs. predicted EMG traces under movement force conditions for the infraspinatus muscle, from the Sergio & Kalaska M1 data set. The center plot shows
the trajectories in eight different directions (in the (x, y) plane) taken by the hand. This figure is taken from Sergio & Kalaska. Each of the eight plots surrounding this center
plot shows the EMG traces over time for each hand trajectory, illustrating the following: (i) the observed averaged EMG activity, (ii) the predicted EMG activity, as obtained
by VBLS using the entire data set (VBLS-full), and (iii) the predicted EMG activity, as obtained VBLS using only isometric data for fitting (VBLS-cv).

of VBLS achieve a similar level of performance. The average r2
values (averaged over all 11muscles) confirm this: batch VBLS had
an average r2 value of 0.7998, while real-time VBLS had an average
r2 value of 0.7966.

4.4. Interpretation of analysis of neural data

While the main focus of this paper lies in the introduction of a
robust linear regression technique for high-dimensional data, we
would like to discuss how our analysis technique can be exploited
for the interpretation of the neurophysiological data that we used
in this study.

In Sergio and Kalaska (1998), one of the main results was
that the firing of the reported M1 neurons had strong correlation
with EMG-like (or force-like) signals in both movement and
isometric conditions. In contrast, evidence for correlations with
kinematic data (such as movement direction, velocity, or target
direction) was less pronounced. Figs. 16 and 17 reproduce similar
illustrations to Figures 3A and 3B in Sergio and Kalaska (1998). The
two figures show the EMGactivity of the infraspinatusmuscle in all
eight isometric force production directions (Fig. 16) andmovement
directions (Fig. 17). The trajectories, shown in (x, y) coordinates,
taken by the hand are illustrated in the center of each figure. These
center figures are taken from the original figures of Sergio and
Kalaska (1998), since we did not have access to the hand trajectory
data. Each of the eight EMG plots in Figs. 16 and 17 shows the
following three EMG traces: (i) the raw average EMG trajectories;
(ii) the predicted EMG activity from M1 neurons, as obtained by
VBLS using all available data in all conditions; and (iii) a cross-
validation fit that was obtained by VBLS using only half of the

data: for the isometric condition, only movement data was used
for fitting, and for the movement condition, only isometric data
was used for fitting. This last cross-validated fit tests how well
isometric M1 neural recordings can predict movement EMG and
how well movement-related M1 neural recordings can predict
isometric EMG. Alternatively, it tests whether the neuron to EMG
relationship is the same between the isometric and the movement
conditions.

As Figs. 16 and 17 both show, M1 neural firing predicts
the EMG traces very well in general. The cross-validation tests
also demonstrate very good EMG reconstruction, thus confirming
Sergio & Kalaska’s results (Sergio & Kalaska, 1998) that the
recordedM1 neurons have sufficient information to extract signals
of the time-varying dynamics and the temporal envelopes of EMG
activities.

The main message in Kakei et al. (1999, 2001) was that one can
find neurons inM1 that carry intrinsic (muscle-based) and neurons
that carry extrinsic ((x, y) task space) information. In contrast, PM
had predominantly extrinsic neurons. For our data analysis, we had
access to the average firing rates of the M1 and PM neurons and
the corresponding EMG traces, as well as the (x, y) movement as
performed by the hand. Thus, we used VBLS to predict the EMG
activity in all three arm posture conditions (pronated, supinated
andmidway between the two) from the neural firing and to predict
the (x, y)-velocity trajectories from neural firing. Note that all this
data was obtained from the same highly trained monkey, such
that it was possible to (i) re-use EMG data obtained during the
M1 experiment as target for the PM data and (ii) share the same
(x, y) data across the M1 and PM experiment. We illustrate our
results in a similar form as in Figs. 16 and 17, showing plots for
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(a) Legend.

(b) Observed vs. predicted EMG traces for the ECRB muscle in the supinated wrist condition, given M1
neural firing.

Fig. 18. Observed vs. predicted EMG traces for the ECRB muscle in the supinated wrist condition, from the Kakei et al. M1 neural data set. The center plot shows the
trajectories in eight different directions (in the (x, y) plane) taken by the hand. Each of the eight plots surrounding this center plot shows the EMG traces over time for each
hand trajectory, illustrating (i) the observed averaged EMG activity and (ii) the predicted EMG activity, as obtained by VBLS using data from all conditions (VBLS-full).

(a) Legend.

(b) Observed vs. predicted EMG traces for the ECRB muscle in the supinated wrist condition, given PM
neural firing.

Fig. 19. Observed vs. predicted EMG traces for the ECRB muscle in the supinated wrist condition, from the Kakei et al. PM neural data set. The center plot shows the
trajectories in eight different directions (in the (x, y) plane) taken by the hand. Each of the eight plots surrounding this center plot shows the EMG traces over time for each
hand trajectory, illustrating (i) the observed averaged EMG activity and (ii) the predicted EMG activity, as obtained by VBLS using data from all conditions (VBLS-full).
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(a) Legend.

(b) Observed vs. predicted velocities in the x direction for the supinated wrist condition, given M1 neural
firing.

Fig. 20. Observed vs. predicted velocities in the x direction for the supinated wrist condition, from the Kakei et al. M1 neural data set. The center plot shows the trajectories
in eight different directions (in the (x, y) plane) taken by the hand. Each of the eight plots surrounding this center plot shows the velocities (in m/s) over time for each hand
trajectory, illustrating (i) the observed velocities and (ii) the predicted velocities, as obtained by VBLS using data from all conditions.

(a) Legend.

(b) Observed vs. predicted velocities in the y direction for the supinated wrist condition, given M1 neural
firing.

Fig. 21. Observed vs. predicted velocities in the y direction for the supinated wrist condition, from the Kakei et al. M1 neural data set. The center plot shows the trajectories
in eight different directions (in the (x, y) plane) taken by the hand. Each of the eight plots surrounding this center plot shows the velocities (in m/s) over time for each hand
trajectory, illustrating (i) the observed velocities and (ii) the predicted velocities, as obtained by VBLS using data from all conditions.
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(a) Legend.

(b) Observed vs. predicted velocities in the x direction for the supinated wrist condition, given PM neural
firing.

Fig. 22. Observed vs. predicted velocities in the x direction for the supinated wrist condition, from the Kakei et al. PM neural data set. The center plot shows the trajectories
in eight different directions (in the (x, y) plane), taken by the hand. Each of the eight plots surrounding this center plot shows the velocities (in m/s) over time for each hand
trajectory, illustrating (i) the observed velocities and (ii) the predicted velocities, as obtained by VBLS using data from all conditions.

the extensor carpi radialis brevis (ECRB) muscle and only for the
supination posture. Fig. 18(b) shows the EMG fits for M1 neurons,
while Fig. 19(b) shows the same fits for PM neurons. The center
plots illustrate recorded (x, y) movement in the horizontal plane
in this posture. Interestingly, both M1 and PM neurons achieve
a very good EMG reconstruction.8 Figs. 20(b), 22(b), 21(b) and
23(b) demonstrate the (x, y)-velocity fits for M1 and PM neurons,
respectively, in the supination condition.9 The quality of fit appears
reduced in comparison to the EMG data, but it is hard to quantify
this statement as EMG and (x, y)-velocities have quite different
noise levels such that r2 values cannot be compared.

In order to judge whether M1 or PM neurons achieve better
fits for EMG and (x, y)-velocity data, we compared the r2 values
from all experimental conditions in a pairwise student’s t-test. No
significant difference could be found between either the quality of
EMG fitting or the (x, y)-velocity fits. Thus, our analysis concludes
that both M1 and PM carry sufficient information to predict EMG
activity. It should be noted, however, that in Kakei et al.’s original
experiment, neurons were classified into extrinsic or intrinsic
neurons according to how much their tuning properties were
compatible with intrinsic or extrinsic variables. This analysis was

8 It should be noted that, potentially, the hand movement from Kakei et al. is of
significant lower complexity than the armmovement data of Sergio & Kalaska. The
temporal profiles of the EMG data in Kakei et al. is much simpler, such that it may
be easier to predict it. Support for this latter hypothesis comes from the fact that
essentially all statistical methods we tested performed equally well on the EMG
prediction problem. Thus, future work will have to examine whether PM neurons
would also be able to predict more complex EMG traces.

9 The optimal delay value between M1 cortical neural firing and the resulting
direction of movement was found to be 80 ms, since this value lead to the lowest
fitting error. In a similar fashion, the optimal delay between PM cortical neural
firing, and the resulting direction of movement was found to be 90 ms.

a single neuron analysis, while our investigation looked at the
predictive capabilities of the entire population of neurons. Thus,
our results are not in contradiction with Kakei et al., but rather,
demonstrate the important difference between the predictive
capabilities of a single neuron vs. that of the population code. The
latter is of particular importance for brain–machine interfaces, and
our results provide further evidence for the information richness of
cortical areas that, from the view of single neuron analysis, seemed
to be much more specialized.

We also analyzed the neurons that were found to be relevant
for EMG prediction and (x, y)-velocity prediction, using t-tests
performed on the inferred regression coefficients. In particular,
we wondered whether some neurons in PM and M1 would
specialize on EMG prediction, while others would prefer (x, y)-
velocity prediction. However, no interesting specialization could
be found. For example, of all 72 PM neurons, we found that
4.17%were relevant to (x, y)-velocity prediction only, 15.28%were
relevant to EMG prediction only, and 79.17% were relevant to
both velocity and EMG prediction (leaving 1.39% of PM neurons
to be irrelevant to both velocity and EMG prediction). Of all 92
M1 neurons, we found that 4.35% were relevant to (x, y)-velocity
prediction only, 26.09% were relevant to EMG prediction only, and
65.22% were relevant to both velocity and EMG prediction. Thus,
the majority of neurons were involved in both EMG and velocity
prediction.

This rich information about different movement variables in
both M1 and PM most likely contributes to the success of various
brain–machine interface projects, where the precise placement of
electrode arrays seemingly does not matter too much.
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(a) Legend.

(b) Observed vs. predicted velocities in the y direction for the supinated wrist condition, given PM neural
firing.

Fig. 23. Observed vs. predicted velocities in the y direction for the supinated wrist condition, from the Kakei et al. PM neural data set. The center plot shows the trajectories
in eight different directions (in the (x, y) plane) taken by the hand. Each of the eight plots surrounding this center plot shows the velocities (in m/s) over time for each hand
trajectory, illustrating (i) the observed velocities and (ii) the predicted velocities, as obtained by VBLS using data from all conditions.

5. Discussion

This paper addresses theproblemof analyzinghigh-dimensional
data with linear regression techniques, typically encountered
in neuroscience and the new field of brain–machine interfaces.
In order to achieve robust statistical results, we introduced a
novel Bayesian technique for linear regression analysis with auto-
matic relevance determination, called Variational Bayesian Least
Squares. In contrast to previously proposed variational linear re-
gressionmethods, VBLS is computationally efficient, requiringO(d)
– instead ofO(d3) – updates per EM iteration. Thus, it is suitable for
real-time analysis with large amounts of high-dimensional data,
as required in brain–machine interfaces. Comparisons with clas-
sical linear regression methods and a ‘‘gold standard’’ obtained
from a brute force search over possible model spaces demonstrate
that VBLS performs very well without any manual parameter tun-
ing and that it has the quality of a ‘‘black box’’ statistical analysis
method.

A point of concern that one could raise against the VBLS
algorithm is in how far the variational approximation in this
algorithmaffects the quality of function approximation. It is known
that factorial approximations to a joint distribution create more
peaked distributions, such that one could potentially assume the
VBLSmight tend a bit towards overfitting. It is important to notice,
however, that in the case of VBLS, a more peaked distribution
over the posterior distribution of bm actually entails a stronger
bias towards excluding the associated input dimensions. A more
peaked distribution over bm pushes the regression parameter
closer to zero. Thus, VBLS will be on the slightly pessimistic side
of function fitting and is unlikely to overfit, which corresponds
to our empirical experience. Future evaluations and comparisons
with Markov Chain Monte Carlo methods will reveal more details

of the nature of the variational approximation. However, it appears
that VBLS could become a useful drop-in replacement for various
classical regression methods. It also lends itself to incremental
implementation as would be needed in real-time analyses of brain
information.

Our final application of VBLS examined howwell motor cortical
activity can predict EMG activity and end-effector velocity data as
collected in monkey experiments in previous publications (Kakei
et al., 1999, 2001; Sergio & Kalaska, 1998). Our analysis confirmed
that neurons in M1 carry significant information about EMG
activity and end-effector velocity. These results were also obtained
in the original papers but with single-neuron analysis techniques
and not a population code read-out as essentially performed by
VBLS. Interestingly, we also discovered that PM carries excellent
information about EMG and end-effector velocity—it has been
previously suggested that only end-effector information is the
primary variable coded in PM.Most likely, this result is due to using
population code-based analysis instead of single neuron analysis.
Our findings did not suggest that either M1 or PM has a significant
specialized population of neurons that only correlates with either
EMG or end-effector data. Instead, we found that most neurons
were statistically significant for both EMG and end-effector data
prediction. This rich information in themotor corticesmostly likely
contributes significantly to the success of brain–machine interface
experiments, where electrode arrays are placed over large cortical
areas and the reconstruction of behavioral variables seems to be
relatively easy. VBLS offers an interesting new method to perform
such read-outs even in real-time with high statistical robustness.
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