
Automatic Outlier Detection: A Bayesian Approach

Jo-Anne Ting∗, Aaron D’Souza† Stefan Schaal∗‡

∗Computer Science, University of Southern California, Los Angeles, CA 90034
†Google, Inc. Mountain View, CA 94043

‡ATR Computational Neuroscience Labs, Kyoto 619-0288, Japan

Email: joanneti@usc.edu, adsouza@google.com, sschaal@usc.edu

Abstract— In order to achieve reliable autonomous control
in advanced robotic systems like entertainment robots, assistive
robots, humanoid robots and autonomous vehicles, sensory data
needs to be absolutely reliable, or some measure of reliability
must be available. Bayesian statistics can offer favorable ways
of accomplishing such robust sensory data pre-processing. In
this paper, we introduce a Bayesian way of dealing with outlier-
infested sensory data and develop a “black box” approach to
removing outliers in real-time and expressing confidence in
the estimated data. We develop our approach in the frame-
work of Bayesian linear regression with heteroscedastic noise.
Essentially, every measured data point is assumed to have
its individual variance, and the final estimate is achieved by
a weighted regression over observed data. An Expectation-
Maximization algorithm allows us to estimate the variance of
each data point in an incremental algorithm. With the exception
of a time horizon (window size) over which the estimation
process is averaged, no open parameters need to be tuned,
and no special assumption about the generative structure of
the data is required. The algorithm works efficiently in real-
time. We evaluate our method on synthetic data and on a pose
estimation problem of a quadruped robot, demonstrating its
ease of usability, competitive nature with well-tuned alternative
algorithms and advantages in terms of robust outlier removal.

I. INTRODUCTION

Robotic systems and their control mechanisms rely cru-

cially on the quality of sensory data in order to make robust

control decisions. While certain sensors such as potentiome-

ters or optical encoders are inherently easy to assess in their

noise characteristics, other sensors such as visual systems,

GPS devices and sonar sensors can provide measurements

that are infested by outliers. Thus, robust and reliable outlier

removal is mandatory in order to include these types of data

in control processes. Our particular application domain of

legged locomotion is especially vulnerable to perceptual data

of poor quality, as one undetected outlier can potentially

disturb the balance controller to the point that the robot loses

stability.

An outlier is generally defined as an observation that “lies

outside some overall pattern of distribution” [1]. Outliers

may arise from sensor noise (producing values that fall

outside the valid range of values), from temporary sensor

failures, or from unanticipated disturbances in the envi-

ronment (e.g., a brief change of lighting conditions for a

visual sensor). A typical approach of detecting outliers is to

characterize what normal observations look like, and then to

single out samples that deviate from these normal properties.

Existing methods for outlier detection include methods that

classify a data point based on a (Mahalanobis) distance from

the expected value, approaches that use information-theoretic

principles, such as selecting the subset of data points that

minimize the prediction error, and techniques that assume

that the data was generated by some special generative

model.

Outlier classification based on a Mahalanobis distance can

work quite well, but tends to require the setting of some

threshold that defines whether a point is an outlier or not.

This threshold value typically needs to be tuned manually

beforehand in order to determine its empirically optimal

value for the system. In information-theoretic approaches,

outlier detection may be done through active learning [2],

clustering (such as k-means [3]) [4] [5] or mixture models

[6] [7]. These methods may require sampling, the setting

of certain parameters (i.e. the optimal k in k-means), and

may not all lend themselves to a real-time implementation,

as required in robotics, where sensor data are made available

one at a time and need to be discarded once they have

been observed. Another commonly used method in this sec-

ond category is the Random Sample Consensus (RANSAC)

algorithm [8]. RANSAC tries to find the subset of data

points that produces the lowest error in an iterative fashion.

Unfortunately, this may be too computationally intensive for

real-time applications and may involve heuristic methods to

narrow down the searchable space of subsets. An example

of an approach that falls in the third (and second) class

of methods is mixture models. It assumes that the data

was generated by some underlying structure (e.g. a mixture

of a Gaussian distribution and a uniform distribution [9]

[10] [11]). The probabilistic assumptions of this approach,

however, can be potentially restrictive and may not work as

well on datasets where outliers and inliers are not demarked

by a large margin.

The ideal algorithm should detect and remove outliers in

real-time—without the need for sampling, model assump-

tions or any action on the user’s part. In addition, the algo-

rithm should adjust to drifting functions, since the working

conditions of real sensors usually change over time. In this

paper, we propose a novel Bayesian algorithm that has many

of these properties. It is able to automatically detect outliers

in general linear models in a “black box”-like way. We

consider linear regression to start, since nonlinear functions

can be treated with locally weighted methods [12] in a

similar fashion. We first introduce our Bayesian algorithm,

before presenting a modified version that can be implemented

in real-time (i.e. it can handle data arriving sequentially,

point by point, over time). Finally, we evaluate our algorithm

on both synthetic and robotic data, demonstrating how it

performs at least as well as other standard approaches. In

certain cases, it outperforms well-tuned alternative methods.

II. OUTLIER DETECTION IN LINEAR

REGRESSION

Let us assume that we have a dataset D = {xi, yi}
N

i=1

that has N data points, each consisting of a d-dimensional

input vector xi (where d is the number of input dimensions)

and a scalar output yi. Only the input and output data are

observed. We can arrange the input vectors xi in the rows

of the matrix X and set the corresponding scalar outputs yi

to be the coefficients of the vector y. A general model for

linear regression is then:

yi = βT xi + εyi
(1)

where β is a d-dimensional vector and εyi
is additive mean-

zero noise. The Ordinary Least Squares (OLS) estimate of

the regression vector βOLS is
(

XT X−1
)

XT y. However, it

is not uncommon for observed data to have outliers, and if

outliers are not removed, the regression estimate βOLS will

be biased.

A. Bayesian Regression for Automatic Outlier Detection

Now, let us take (1) and modify the model so that

the observed outputs y have heteroscedastic variances, i.e.

unequal variances. We adopt a weighted linear regression

model and introduce a weight wi for each yi such that the

variance of yi is weighted with wi, as done in [13]. However,

the weighted least squares regression model in [13] assumes

that the weights are known and given. Using incorrect esti-

mates for the weights may lead to deteriorated performance,

and common approaches for estimating the weights include

modeling the weights to be inversely proportional to the

sample output variance [14]. In comparison, we adopt a

different approach and treat the weights w probabilistically.

This Bayesian approach is similar to the variational Bayesian

algorithm for robust regression proposed in [11] by Faul

& Tipping. However, [11] models the regression vector β
probabilistically with a Gaussian prior, and hyperparameters

are introduced in order to have automatic relevance determi-

nation (ARD) [15] on the input data features. This approach

adopts a mixture model to explain outliers, using either a

uniform or Gaussian distribution to capture them.

Our model is a Bayesian treatment of weighted regression

that is able to detect and eliminate outliers automatically.

We make the following standard assumptions about the

probability distributions of the random variables:

yi ∼ Normal
(

βT xi, σ
2/wi

)

β ∼ Normal (β0,Σβ,0)

wi ∼ Gamma (awi
, bwi

)

(2)

where β0 is the prior mean of β and a d-dimensional vector;

Σβ,0 is the prior covariance of β and a d by d diagonal

matrix; and σ2 is the variance of the mean-zero normally

distributed output noise. We can treat this entire regression

problem as an Expectation-Maximization-like (EM) learning

problem [16] [17]. Our goal is to maximize the log likelihood

log p(y|X), which is called the “incomplete” log likelihood,

since the hidden probabilistic variables are marginalized out.

However, due to analytical issues, we do not have access

to this incomplete log likelihood, but instead, only a lower

bound of it. The lower bound is based on an expected

value of the “complete” data likelihood 〈log p(y, β,w|X)〉 1,

formulated over all variables of the learning problem, where

log p(y, β,w|X) is:

N
∑

i=1

log p(yi|xi, wi, β) + log p(β) +

N
∑

i=1

log p(wi) (3)

The expectation of this complete data likelihood should

be taken with respect to the true posterior distribution of

all hidden variables Q(β,w). Since this is an analytically

intractable expression, a lower bound can be formulated

using a technique from variational calculus where we make

a factorial approximation of the true posterior as follows:

Q(β,w) = Q(β)Q(w). While losing a small amount of

accuracy, all resulting posterior distributions over hidden

variables become analytically tractable. The final posterior

EM-update equations are listed below:

Σβ =

(

Σ−1

β,0 +
1

σ2

N
∑

i=1

〈wi〉xix
T
i

)−1

(4)

〈β〉 = Σβ

(

Σ−1

β,0β0 +
1

σ2

N
∑

i=1

〈wi〉 yixi

)

(5)

〈wi〉 =
awi,0 + 1

2

bwi,0 + 1

2σ2

(

yi − 〈β〉
T

xi

)2

+ 1

2σ2 x
T
i Σβxi

(6)

σ2 =
1

N

N
∑

i=1

[

(

yi − 〈β〉
T

xi

)2

+ xT
i Σβxi

]

(7)

These update equations need to be run iteratively until all

parameters and the complete log likelihood converge to

steady values.

Examining (6) reveals that if the prediction error in yi is

so large that it dominates over the other denominator terms,

then the weight 〈wi〉 of that point will be very small. As

this prediction error term in the denominator goes to ∞,

〈wi〉 approaches 0. As can be seen in both (4) and (5), a

data point with an extremely small weight will have a smaller

contribution to the calculation of the regression estimate 〈β〉.
This effect is equivalent to the detection and removal of an

outlier if the weight of the data point (xi, yi) is small enough.

A few comments should be made regarding the initial-

ization of the priors used in (4) to (7). First of all, the

prior covariance of β, Σβ,0, need only to be set to a large

1Note that 〈〉 denotes the expectation operator

enough value (e.g., 103I, where I is the identity matrix),

which corresponds to an uninformative prior on β (i.e.

the probability distribution is a relatively flat Gaussian).

Σβ,0 in (4) can be interpreted to be a stabilizing ridge-like

value, similar to that of ridge regression, to ensure that the

regression does not break down in the presence of collinear

input data. Secondly, β0 is usually initialized to zero, unless

informative prior knowledge is available. As β0 is multiplied

by Σ−1

β,0, it does not have any real influence on the update

equations unless Σβ,0 is chosen to be informative. Thirdly,

the prior scale parameters awi,0 and bwi,0 should be selected

so that the weights 〈wi〉 are 1 with some confidence. That

is to say, we start by assuming that all points are inliers.

For example, we can set awi,0 = 1 and bwi,0 = 1 so that

〈wi〉 has a prior mean of awi,0/bwi,0 = 1 with a variance

of awi,0/b2

wi,0
= 1. By using these values, the maximum

value of 〈wi〉 is capped at 1.5. This set of prior parameter

values is generally valid for any application and/or data set

and does not need to be modified, unless the user has good

reason to insert strong biases towards particular parameter

values, which we will not address in this paper.

The key insight towards this Bayesian treatment of

weighted regression with heteroscedastic variance is that

each data point will be assigned a posterior weight that is

indicative of the amount of variance it has, relative to the

average variance of the dataset. Consequently, a data point

will be downweighted if its variance is much higher than that

of the average variance. This algorithm does not require any

tuning of threshold values or any user intervention before-

hand, performing automatic outlier detection and removal in

a black box-like way.

B. Incremental Version

The algorithm above is suitable if the data D is available

in batch form. However, as in most robotic systems, data is

often available from sensors one sample at a time, and filter-

ing of the data needs to be done in a real-time, incremental

(i.e. online) fashion. Hence, we take the Bayesian weighted

model from (2) and modify it to make it an online algorithm.

As typical in online algorithms, we introduce a forgetting rate

to specify the window over which we wish to average data

[18]. We use a scalar forgetting rate, λ, where 0 ≤ λ ≤ 1,

to exponentially discount data collected in the past. The

forgetting rate enters the algorithm by accumulating the

sufficient statistics of the batch algorithm in an incremental

way. The sufficient statistics can be extracted by examining

the EM update equations in (4) to (7). As the kth data point

becomes available from the sensors, we can calculate the

update equations for β and σ2 as follows:

Σβk
=

(

Σ−1

β,0 +
1

σ2
sumwxxT

k

)

−1

(8)

〈βk〉 = Σβk

(

Σ−1

β,0β0 +
1

σ2
sum

wyx
k

)

(9)

σ2

k =
1

Nk

[

sum
wy2

k − 2sum
wyx
k 〈β〉 + 〈β〉

T
sumwxxT

k 〈β〉

+1T diag
{

sumwxxT

k Σβ

}]

(10)

where the sufficient statistics, exponentially discounted by λ,

are:

Nk = 1 + λNk−1

sumwxxT

k = 〈wk〉xkx
T
k + λsumwxxT

k−1

sum
wyx
k = 〈wk〉 ykxk + λsum

wyx
k−1

sum
wy2

k = 〈wk〉 y2

k + λsum
wy2

k−1

and all of Nk, sumwxxT

k , sum
wyx
k , sum

wy2

k are 0 for k = 0.

Notice that the calculation of the posterior covariances of β
in (4) and (8) requires a matrix inversion, resulting in a com-

putational complexity of O(d3). This will be fine for low-

dimensional systems. However, for systems where the data

has a large number of input dimensions, the matrix inversion

becomes computationally prohibitive. In such situations, (8)

can be re-written recursively, as in Recursive Least Squares

[18] [19], in order to reduce the computational complexity to

O(d) per EM iteration. Given knowledge of the frequency

of incoming data, the value of λ can be set accordingly,

since the number of data samples that is not “forgotten”

is 1/(1 − λ). Additionally, the regression estimates come

with a measure of confidence (the posterior covariance of

β), such that the quality of the estimates and predictions can

be judged.

Naturally, this incremental approximation of the batch

Bayesian algorithm comes at a cost, since data points that

initially appeared to be outliers may actually have been

inliers (once we have collected enough data samples to

realize this). If the forgetting rate λ used is small enough,

then this effect will be less pronounced, since the window

size of past data samples we are averaging over will be small

as well. Hence, if this inlier falls outside the window of

the past 1/(1 − λ) data samples, the effect of mistaking an

inlier as an outlier will be less pronounced. At the same

time, λ should not be too small in order to ensure that the

discrepancy in results between the incremental and batch

versions is not too great. This trade-off between preserving

equivalency with the batch version and discounting past

events is a known issue with the use of forgetting factors

for incremental algorithms.

III. RESULTS

We evaluate our algorithm’s ability to automatically detect

outliers on a synthetic dataset, before implementing it on a

robotic quadruped dog, LittleDog, manufactured by Boston

Dynamics Inc. (Cambridge, MA). We demonstrate the algo-

rithm’s performance by comparing it to four other standard

techniques for outlier detection. These are described below:

• The first calculates the Mahalanobis distance for each

data point from the expected value and based on an

optimal hand-tuned threshold, classifies it as an outlier

if it exceeds this threshold.

• The second is a simple mixture model that attempts to

capture the dataset’s structure with a two-component

mixture model: a Gaussian distribution for inliers and

and a uniform distribution for outliers.

• The third method is robust least squares regression. In

particular, this version of robust least squares fits with

bisquare weights [20], where the weight of each data

point is a function of how far the data point is from the

fitted line. Points close to the fitted line get full weight,

while those further get smaller weight. The Matlab

function robustfit()was used for implementation

of robust least squares in experiments.

• The last technique is Faul & Tipping’s variational

Bayesian algorithm for robust regression, described in

Section II-A. This iterative EM-like algorithm adopts

a mixture model approach for explaining outliers and

assumes outliers are generated by a uniform distribution.

The EM update equations can be found in [11].

The thresholding approach collects the input and output

data samples, treats them jointly and calculates the Ma-

halanobis distance for each data sample. It then selects

a threshold such that a data sample with a Mahalanobis

distance greater than the threshold value is classified as an

outlier and excluded from the dataset. The optimal threshold

value is found manually for a particular dataset. The final

regression is done using the remaining samples in the data.

Similarly, the mixture model approach treats the input and

output data jointly and attempts to cluster the data with a

Gaussian distribution and a uniform distribution. For each

data sample, two probabilities are inferred: the probability of

the data sample belonging to the Gaussian distribution and

the probability of the data sample belonging to the uniform

distribution. If the probability of the data sample belonging

to the Gaussian distribution exceeds some threshold, then

the data sample is included in the dataset. Otherwise, it is

an outlier and is removed.

The third approach, robust least squares regression with

bisquare weights, uses an iteratively re-weighted least

squares approach. First, it runs weighted least squares, before

calculating the adjusted residuals and standardizing them.

The weight estimates, w, are a function of the standardized

adjusted residuals, u. That is, if the standardized adjusted

residual of the data sample i is ui, the data sample’s weight

wi is:

wi =

{
(

1 − u2

i

)2

, |ui| < 1
0, |ui| ≥ 1

The algorithm is repeated until convergence.

A. Synthetic Dataset

First, we evaluated the algorithms on a linear regression

problem, where the data is available in batch form. The

synthetic dataset had 5 input dimensions, 1000 data points

and additive Gaussian noise with a signal-to-noise ratio

(SNR) of 10. Each data point had a 20% probability—drawn

from a uniform distribution—of being an outlier. Outliers

were created such that they were at least some distance kσ

−2 −1 0 1 2
−2

0

2

4

6

8

10

12

Input data

O
u
tp

u
t
d
a
ta

Noiseless output

Noisy output

Outlier

Fig. 1. A sample dataset showing data points from a linear function with
1-dimensional inputs. True noiseless output data, Y, is in squares; noisy
outputs are marked with circles; and outliers are denoted by solid stars.
(Outliers are at least 3σ from the true conditional output mean, SNR of the
output data is 10.)

from the true mean of the outputs, where σ is the standard

deviation of the true conditional mean of the outputs and k
is a scaling factor (e.g. k = 1, 2, 3, ...). Since approximately

95% of data values in a Gaussian distribution lie within ±2σ
from the mean, this ensured that the outlying data points

were far away enough to be classified as outliers. Fig. 1

plots the outputs of a representative dataset with only one

input dimension in order to visualize the data samples in a

2D plot. The true outputs are denoted in solid squares, noisy

outputs are marked with circles, and outliers are denoted by

solid stars. Notice that the outliers were generated to be +3σ
away from the true output mean—avoiding a scenario where

outliers below the data cloud could potentially diminish the

effects of overestimation.

We ran all algorithms on a 5 dimensional training dataset.

We constructed a test dataset in a similar way as the

training set, except no noise or outliers were present in the

test outputs. Then, we calculated the predictions of each

algorithm on the test dataset, using the regression estimate

inferred from training on the noisy dataset. Table I shows the

normalized mean squared prediction error of the noiseless

test dataset for all algorithms, averaged over 10 trials and

as a function of how far the outliers were from the inliers.

The results show that Bayesian weighted linear regression

achieves the lowest average normalized mean squared error

(NMSE). Thresholding appears to work quite well when

the threshold value is hand-tuned optimally, while mixture

models, robust least squares and Bayesian robust regression

seem to be less robust to outliers. Notice that the error values

for the mixture model and Bayesian robust regression are

quite similar. This may be explained by the fact that both

methods rely on a uniform distribution to capture outliers.

It is clear that learning the weights, instead of modeling

them with a heuristic function, is the more preferable and

powerful approach to outlier detection. Unsurprisingly, the

error values are lower when outliers are closer to inliers. In

this scenario, failure to detect an outlier has a less adverse

effect on the performance of the algorithms, since outliers

may be indistinguishable from noisy inliers.

TABLE I

AVERAGE NORMALIZED MEAN SQUARED ERROR (NMSE) ON A LINEAR

FUNCTION WITH 5 INPUT DIMENSIONS, EVALUATED IN BATCH FORM

OVER 10 TRIALS FOR THRESHOLDING USING MAHALANOBIS DISTANCE,

A MIXTURE MODEL, ROBUST LEAST SQUARES, FAUL & TIPPING’S

BAYESIAN ROBUST REGRESSION AND BAYESIAN WEIGHTED

REGRESSION: σ IS THE STANDARD DEVIATION OF THE TRUE

CONDITIONAL OUTPUT MEAN AND SNR OF THE OUTPUTS IS 10.

Algorithm
Distance of outliers from mean
+3σ + 2σ + σ

Thresholding 0.0903 0.0503 0.0232

Mixture Model 0.1327 0.0688 0.0286

Robust Least Squares 0.1890 0.1518 0.0880

Robust Regression 0.1320 0.0683 0.0282

Bayesian weighted regression 0.0273 0.0270 0.0210

In the case where the data contains outliers that lie ±σ,

±2σ or ±3σ from the true output mean, the average NMSE

values will be reduced due to the effects of cancellation

by outliers above and below the data cloud. Regardless,

the trend of performance among the algorithms remains

unchanged, with Bayesian weighted linear regression as the

most competitive.

Next, we evaluated the algorithms on the same synthetic

training datasets used in the first experiment, but in real-

time, making data samples available sequentially one at a

time and using a forgetting rate of λ = 0.999. All algorithms

were made to be incremental through the use of forgetting

rates. The robust least squares algorithm was omitted in

this comparison since it is a batch algorithm, and making

it recursive is non-trivial. Fig. 2(a) and 2(b) track the error

in the predicted outputs on the training data for two types of

datasets: the first has outliers that lie at least 3σ from the true

output mean, while the second has outliers that lie at least 2σ
from the true output mean. As Fig. 2 illustrates, the Bayesian

weighted algorithm, shown in the dark dotted line, reduces

the error to a value that is lowest, compared to the other

algorithms. Thus, this matches the pattern shown in Table

I and confirms that even in a real-time, incremental setting,

the Bayesian weighted regression algorithm outperforms the

other methods.

B. LittleDog Robot

Fig. 3. Quadruped robotic dog
(Boston Dynamics)

We evaluated the algorithms

on a 12 degree-of-freedom

(DOF) quadruped robotic dog,

LittleDog, as shown in Fig 3.

The robot dog has two sources

that measure its orientation:

the motion capture (MOCAP)

system and an on-board inertia

measurement unit (IMU). Both

provide a quaternion q of the

robot’s orientation: qMOCAP from the MOCAP and qIMU

from the IMU. qIMU drifts over time, since the IMU cannot

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Sample Index

N
M

S
E

Thresholding
Mixture model
Robust regression
Bayesian weighted regression

(a) Outliers are at least 3σ from true output mean

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Sample Index

N
M

S
E

Thresholding
Mixture model
Robust regression
Bayesian weighted regression

(b) Outliers are at least 2σ from true output mean

Fig. 2. Normalized mean squared error (NMSE) values for a linear function
with 5 input dimensions (the same synthetic batch datasets used in Table
I) evaluated in an incremental manner for 1000 data samples: λ = 0.999,
SNR of output data is 10.

provide stable orientation estimation but its signal is clean.

qMOCAP has outliers and noise, but no drift. We would like to

estimate the offset between qMOCAP and qIMU, and this offset

is a noisy, outlier-infested, slowly drifting signal. The drift

that occurs in the IMU is quite common in systems where

sensors collect data that need to be integrated. For example,

given angular acceleration from a sensor, we may want to

know what the angular velocity is, and we can calculate

this by integrating the angular acceleration. Unfortunately,

sensor data may contain bias, and in such a case, this will

translate to an error in the angular velocity that will be

propagated and amplified at each step that an integration

operation is performed. Thus, the resulting angular velocity

will have a drifting bias.

Fig. 4 shows the offset data between qMOCAP and qIMU

for one of the four quaternion coefficients, collected over

6000 data samples. It plots the predicted outputs of the four

incremental algorithms, along with the predicted outputs of

the batch version of Bayesian weighted regression. Fig. 5

displays a magnified version of the results. The thresholding,

mixture model and variational Bayesian robust regression

approaches appear to be somewhat sensitive to outliers (oc-

0 1000 2000 3000 4000 5000 6000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample Index

Y
 (

O
u
tp

u
t)

Observed output

Thresholding

Mixture model

Robust regression

Bayesian weighted regression

Batch Bayesian

Fig. 4. Predicted versus observed outputs on the offset between the
quaternion from the IMU and the quaternion from the MOCAP, shown
for one of the four quaternion coefficients (λ = 0.999). Observed outputs
are noisy and contain outliers.

0 1000 2000 3000 4000 5000 6000
−0.05

0

0.05

0.1

0.15

0.2

0.25

Sample Index

Y
 (

O
u

tp
u

t)

Observed output

Thresholding

Mixture model

Robust regression

Bayesian weighted regression

Batch Bayesian

Fig. 5. Magnified view of Fig 4: Predicted versus observed outputs on the
offset between the quaternion from the IMU and the quaternion from the
MOCAP, shown for one of the four quaternion coefficients (λ = 0.999).
Observed outputs are noisy and contain outliers.

curring between the 4000th and 5000th sample). In compari-

son, the incremental version of Bayesian weighted regression

is far less sensitive to outliers. Given it is an incremental

approximation of the batch version, the algorithm’s predicted

outputs track those of the corresponding batch version quite

closely.

IV. CONCLUSION

We have introduced a Bayesian weighted regression algo-

rithm that is able to automatically detect and eliminate out-

liers in real-time, without requiring any interference from the

user, parameter tuning, sampling or model assumptions about

the underlying data structure. We compared this algorithm to

standard approaches for outlier detection, such as threshold-

ing using Mahalanobis distance, mixture models, robust least

squares with bisquare weights and an alternate variational

Bayesian approach to robust regression. We evaluated all

algorithms on synthetic and robotic data, demonstrating the

effectiveness of the Bayesian weighted regression algorithm

in performing real-time outlier detection. It is able to achieve

a level of performance on par with and even exceeding that

of standard approaches, providing a robust and competitive

alternative to filtering sensor data.

V. ACKNOWLEDGMENTS

This research was supported in part by National Science

Foundation grants ECS-0325383, IIS-0312802, IIS-0082995,

ECS-0326095, ANI-0224419, a NASA grant AC#98 − 516,

an AFOSR grant on Intelligent Control, the ERATO Kawato

Dynamic Brain Project funded by the Japanese Science and

Technology Agency, and the ATR Computational Neuro-

science Laboratories.

REFERENCES

[1] D. S. Moore and G. P. Mccabe. Introduction to the Practice of

Statistics Ise. W.H. Freeman & Company, March 1999.
[2] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active

learning. In KDD ’06: Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining,
pages 767–772, New York, NY, USA, 2006. ACM Press.

[3] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of 5th Berkeley Symposium

on Mathematical Statistics and Probability, 1:281–297, 1967.
[4] M. Breitenbach and G. Z. Grudic. Clustering through ranking on

manifolds. In Proceedings of the 22nd international conference on

Machine learning, pages 73–80, New York, NY, USA, 2005. ACM
Press.

[5] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In In Advances in Neural Information Processing

Systems 14: Proceedings of the 2001., 2001.
[6] M. Aitkin and G. T. Wilson. Mixture models, outliers and the em

algorithm. Technometrics, 22:325–331, 1980.
[7] D. W. Scott. Outlier detection and clustering by partial mixture mod-

eling. In COMPSTAT 2004 Symposium, pages 453–465, Heidelberg,
2005. Physica-Verlag.

[8] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[9] D. Fox, W. Burgard, D. Dellaert, and S. Thrun. Monte carlo local-
ization: Efficient position estimation for mobile robots. In AAAI/IAAI,
pages 343–349, 1999.

[10] K Konolige. Robot motion: Probabilistic model; sampling and
gaussian implementations; markov localization. Technical report, SRI
International, 2001.

[11] Anita C. Faul and Michael E. Tipping. A variational approach to
robust regression. In International Conference on Artificial Neural

Networks, pages 95–102, 2001.
[12] C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning. AI

Review, 11:11–73, April 1997.
[13] A. Gelman, J. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data

Analysis. Chapman and Hall, 2000.
[14] T. P. Ryan. Modern Regression Methods. Wiley, 1997.
[15] R.M. Neal. Bayesian learning for neural networks. PhD thesis, Dept.

of Computer Science, University of Toronto, 1994.
[16] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of Royal Statistical

Society. Series B, 39(1):1–38, 1977.
[17] Z. Ghahramani and M.J. Beal. Graphical models and variational

methods. In D. Saad and M. Opper, editors, Advanced Mean Field

Methods - Theory and Practice. MIT Press, 2000.
[18] L. Ljung and T. Sonderstrom. Theory and Practice of Recursive System

Identification. MIT Press, 1983.
[19] G. J. Bierman. Factorization methods for discrete sequential estima-

tion. Mathematics in Science and Engineering, 128, 1977.
[20] D. C. Hoaglin. Letter values: A set of selected order statistics. In

D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding

Robust and Exploratory Data Analysis, pages 33–57. Wiley, 1983.

