
Bayesian Backfitting

Aaron D’Souza adsouza@usc.edu
Sethu Vijayakumar sethu@usc.edu
Stefan Schaal sschaal@usc.edu

Computer Science & Neuroscience, University of Southern California, Los Angeles, CA 90089-2520, USA, and
ATR Human Information Sciences Lab, 2-2 Hikaridai, Seika-cho, Soraku gun, 619-02 Kyoto, Japan.

Abstract
Whenever a graphical model contains connec-
tions from multiple nodes to a single node,
statistical inference of model parameters may
require the evaluation and possibly the inver-
sion of the covariance matrix of all variables
contributing to such a fan-in, particularly in
the context of regression and classification.
Thus, for high dimensional fan-ins, statis-
tical inference can become computationally
rather expensive and numerically brittle. In
this paper, we propose an EM-based estima-
tion method that statistically decouples the
inputs by the introduction of hidden variables
in each branch of the fan-in. As a result, the
algorithm has a per-iteration complexity that
is only linear in the order of the fan-in. Inter-
estingly, the resulting algorithm can be inter-
preted as a probabilistic version of backfitting,
and consequently, is ideally suited for appli-
cations of backfitting that require to cleanly
propagate probabilities, as in Bayesian in-
ference. We demonstrate the effectiveness
of Bayesian Backfitting in dealing with ex-
tremely high-dimensional, underconstrained
regression problems. In addition we highlight
its connection to probabilistic partial least
squares regression, and its extensions to non-
linear datasets through variational Bayesian
mixture of experts regression, and nonpara-
metric locally weighted learning.

1. Introduction

In many statistical learning problems one finds ele-
ments that can be characterized in terms of generalized
linear models

y(x) =

d∑

m=1

bmfm(x; θm) + ε (1)

f (x)
i1

f (x)
i2 y

i

f (x)
id

b

N

Figure 1. Graphical model for generalized linear regression.

i.e., multiple predictors fm(x; θm) (where 1 ≤ m ≤ d)
that are generated by an adjustable nonlinear transfor-
mation with parameters θm, and that are fed linearly
to an output y by an inner product with a parameter
vector b = [b1, . . . , bd]

T and additive noise ε (Atke-
son et al., 1997; Hastie & Tibshirani, 1990; Jordan &
Jacobs, 1994; Poggio & Girosi, 1990). We can depict
such models graphically as shown in Fig. 1. It is easy
to see that the optimal estimate of the parameters bm
(in a least-squares or maximum likelihood sense) is

b =
(
FTF

)−1
FTy where F denotes a matrix whose

columns contain the fm,i of all training data points
i = 1, . . . , N . With increasing number of fan-in vari-

ables, the inversion
(
FTF

)−1
becomes computation-

ally expensive and numerically brittle.

Various strategies are possible to combat these prob-
lems. First, robust methods of matrix inversion can be
employed (Belsley et al., 1980), usually leading to at
least O(d2) computational complexity. As these meth-
ods normally operate solely based on the input data,
they may ignore low variance input dimensions that
are important for the regression in favor of high vari-
ance inputs that are irrelevant — a typical example
of such an algorithm is principal component regression
(PCR) (Schaal et al., 1998). Alternatively, one can try
to find a reduced cost solution by projecting the input
space along specially chosen one-dimensional projec-
tion directions. For example, Partial Least Squares
(PLS) regression (Wold, 1975) computes projections
based on directions of high input-output correlation.

Even though this method performs extremely well in
practice (Schaal et al., 1998), it misses a clean proba-
bilistic interpretation (Frank & Friedman, 1993). Yet
another framework for estimating generalized addi-
tive models of the form y =

∑d
m=1 gm(x) is backfit-

ting (Hastie & Tibshirani, 1990), where the functions
gm absorb the parameters bm in form of gm = bmfm
(see Algorithm 1). Backfitting decomposes the sta-

1: Init: X = [x1,x2, ...,xN]T , gm,i = gm(xi; θm, bm),
gm = [gm,1, gm,2, ..., gm,N]T

2: repeat

3: gm←minbm,θm

∥∥∥gm−(y−∑k 6=m gk)
∥∥∥

2

∀1 ≤ m ≤ d
4: until convergence

Algorithm 1: Backfitting

tistical estimation problem into d individual estima-
tion problems by creating “fake supervised targets”(
y −∑k 6=m gk

)
for each function gm. At the cost of

an iterative procedure, this strategy effectively reduces
the computational complexity of fan-ins, by decompos-
ing it into d individual 1-dimensional estimation proce-
dures, and allows easier numerical robustness control
since no matrix inversion is required.

Using this notion of decoupling the problem along
each branch of the fan-in, Sec. 2 motivates and de-
scribes a modification to the graphical model of Fig. 1,
which performs a similar decoupling, and allows an
EM-based estimation of its parameters. We highlight
the connection of the resulting algorithm (called Prob-
abilistic Backfitting) to traditional backfitting, and
show that it indeed converges to an ordinary least
squares (OLS) regression solution. Sec. 3 discusses
two Bayesian extensions (Bayesian Backfitting-I and
II) to the algorithm, and evaluates their efficacy on
severely underconstrained regression problems. Sec. 4
introduces and evaluates extensions of both Proba-
bilistic and Bayesian Backfitting for probabilistic par-
tial least squares regression, mixture model estimation,
and nonparametric locally weighted learning.

2. Backfitting and Graphical Models

Although backfitting provides a very general frame-
work for estimating additive models, it has no prob-
abilistic derivation and is thus hard to cleanly insert
into statistical learning algorithms that emphasize the
estimation of confidence, posterior distributions, and
model complexity. A simple modification of the graph-
ical model of Fig. 1, however, enables us to create the
desired algorithmic decoupling of the predictor func-
tions, and gives backfitting a probabilistic interpreta-
tion.

y
i

z
i1

zi2

f (x)i1

f (x)i2

b1

b2

f (x)id
zid

bd
N

Figure 2. Graphical model with modified fan-in.

Consider the introduction of a hidden random vari-
able zim in the graphical model, as shown in Fig. 2.
This variable is analogous to the output of the gm(xim)
function of Algorithm 1. For the derivation of our al-
gorithm, we assume that zim and yi are conditionally
normally distributed:

yi|zi ∼ N
(
1T zi, ψy

)
= N

(
d∑

m=1

zim, ψy

)

zim|xi ∼ N (gm(xi), ψzm) = N (bmfm(xi), ψzm)

where 1 = [1, 1, . . . , 1]T . Note that the regression co-
efficients bm are now before the fan in. We will see
that this results in the optimization of each coefficient
requiring only local computation within its branch.

2.1. EM-based Parameter Estimation

Given the data set D = {xi, yi}Ni=1, and the graphical
model of Fig. 2, we wish to estimate the parameters
bm and (possibly) optimize the individual functions
fm(x; θm) with respect to the parameters θm. This
is easily formulated as an EM algorithm, which maxi-
mizes the incomplete log likelihood log p(y|X):

log p(y|X) = −N
2

logψy −
1

2

N∑

i=1

(
yi − bT f(xi)

)2

+ const (2)

by maximizing the expected complete log likelihood
〈log p(y,Z|X)〉, where:

log p(y,Z|X) = −N
2

logψy −
1

2ψy

N∑

i=1

(
yi − 1T zi

)2

−
d∑

m=1

[
N

2
logψzm+

1

2ψzm

N∑

i=1

(zim−bmfm(xi;θm))
2

]

+ const (3)

As this maximization is solely based on standard ma-
nipulations of normal distributions, we omit deriva-
tions and just summarize the EM update equations
for bm and the noise variances ψy and ψzm as follows:

M-Step :

bm =

∑N
i=1 〈zim〉 fm(xi)∑N
i=1 fm(xi)2

ψy =
1

N

N∑

i=1

(
yi − 1T 〈zi〉

)2
+ 1TΣz1

ψzm =
1

N

N∑

i=1

(〈zim〉 − bmfm(xi))
2

+ σ2
zm

E-Step :

1TΣz1 =

(
d∑

m=1

ψzm

)[
1− 1

s

(
d∑

m=1

ψzm

)]

σ2
zm = ψzm

(
1− 1

s
ψzm

)

〈zim〉 = bmfm(xi) +
1

s
ψzm

(
yi − bT f(xi)

)

where we define s = ψy +
∑d
m=1 ψzm, and Σz =

Cov(z|y,X). In addition, the parameters θm
of each function fm can be updated by setting∑N
i=1 (〈zim〉 − bmfm (xi; θm)) ∂fm(xi;θm)

∂θm
= 0 and solv-

ing for θm. As this step depends on the particular
choice of fm, e.g., splines, kernel smoothers, paramet-
ric models, etc., we will not pursue it any further in
this paper and just note that any statistical approxi-
mation mechanism could be used.

Two items in the above EM algorithm are of special
interest. First, all equations are algorithmically O(d)
where d is the number of predictor functions fm. Sec-
ond, if we substitute the expression for 〈zim〉 in the
maximization equation for bm we get the following up-
date equation:

b(n+1)
m = b(n)

m +
ψzm
s

∑N
i=1

(
yi−

∑d
k=1 b

(n)
k fk(xi)

)
fm(xi)

∑N
i=1 fm(xi)2

(4)

Thus each EM cycle updates the mth regression coeffi-
cient by an amount proportional to the correlation be-
tween the mth predictor and the residual error. Hence
the residual can be interpreted as forming a “fake tar-
get” for the mth branch of the fan-in. As the next
section shows, this enables us to place this algorithm
in the context of backfitting.

2.2. Interpreting the EM Solution as
Probabilistic Backfitting

In the context of understanding Eq. (4) as Probabilis-
tic Backfitting, we note that backfitting can be viewed
as a formal Gauss-Seidel algorithm; an equivalence

that becomes exact in the special case of linear mod-
els (Hastie & Tibshirani, 1990). For the linear system
FTFb = FTy, the Gauss-Seidel updates for the indi-
vidual bm are:

bm =

∑N
i=1

(
yi −

∑d
k 6=m bkfk(xi)

)
fm(xi)

∑N
i=1 fm(xi)2

(5)

A well-known extension to the Gauss-Seidel algorithm
called successive relaxation adds a fraction (1 − ω) of
bm to the update and giving us:

b(n+1)
m = (1− ω)b(n)

m

+ ω

∑N
i=1

(
yi −

∑d
k 6=m bkfk(xi)

)
fm(xi)

∑N
i=1 fm(xi)2

(6)

which has improved convergence rates for overrelax-
ation (1 < ω < 2), or improved stability for under-
relaxation (0 < ω < 1). For ω = 1, the standard
Gauss-Seidel/backfitting of Eq. (5) is recovered. Set-
ting ω = ωm = ψzm/s in Eq. (6), it can be shown that
(after some algebraic rearrangement,) we obtain ex-
actly our EM update in Eq. (4), i.e., we indeed derive
a probabilistic version of backfitting.

2.3. Convergence of Probabilistic Backfitting

While the incomplete likelihood in Eq. (2) has only
a global maximum w.r.t. its parameters (correspond-
ing to OLS), could the introduction of the hidden
variables and additional parameters in Eq. (3) in-
troduce local maxima in the likelihood landscape?
Note that for examining convergence properties, we
only focus on the estimation of the parameters φ =
[b, ψz1, . . . , ψzd, ψy]

T , as the functions fm cannot be
treated in general without knowing their structure. We
start with the assumption that we have reached a sta-
tionary point φ∗ in the EM algorithm, which implies:

∂ 〈log p(y,Z|X;φ)〉
∂φ

∣∣∣∣
φ=φ∗

= 0 (7)

Using Jensen’s inequality, it is easy to show that for an
arbitrary distribution Q(Z) over the hidden variables:

log p(y|X;φ) ≥ 〈log p(y,Z|X;φ)〉Q(Z) +H [Q(Z)]

= F(Q,φ) (8)

where H [·] denotes entropy. EM alternately maxi-
mizes F w.r.t. Q (in the E-step) and φ (in the M-
step). Differentiating F(Q,φ) w.r.t. φ at the station-
ary point φ∗, and noting that H [·] is independent of
φ, gives:

∂F(Q,φ)

∂φ

∣∣∣∣
φ=φ∗

=
∂ 〈log p(y,Z|X;φ)〉

∂φ

∣∣∣∣
φ=φ∗

= 0 (9)

Note however, that the preceding E-step sets Q(Z)
to the true posterior distribution p(Z|y,X;φ∗) which
raises the lower bound in Eq. (8) to an equality, from
which it follows that:

∂ log p(y|X;φ)

∂φ

∣∣∣∣
φ=φ∗

=
∂F(Q,φ)

∂φ

∣∣∣∣
φ=φ∗

= 0 (10)

i.e. we have reached a maximum in the incomplete like-
lihood as well. Given that the incomplete log likelihood
log p(y|X;φ) in Eq. (2) has only a global maximum
(i.e., the OLS solution), reaching the stationary point
of Eq. (7) in our EM algorithm for Probabilistic Back-
fitting must correspond to finding the OLS solution.
Therefore, Probabilistic Backfitting is indeed perform-
ing true linear regression with a global optimum.

3. Bayesian Backfitting

Having a probabilistic interpretation of backfitting, al-
lows us to use a Bayesian framework to regularize its
OLS solution against overfitting. We achieve this by
placing a prior distribution over the regression coeffi-
cients b. As the following two sections demonstrate,
our choice of prior structure results in two different,
yet important forms of regularization.

3.1. Regularization over Input Dimensionality
(Bayesian Backfitting-I)

We place a Gaussian prior over each element bm of b,
with mean 0 and precision αm, and a Gamma prior
over each precision variable αm:

p(b|α) =
d∏

m=1

(αm
2π

)1/2

exp
{
−αm

2
b2m

}

p(α) =

d∏

m=1

baαα
Γ(aα)

α(aα−1)
m exp (−bααm)

(11)

Using a factorial variational approximation (Ghahra-
mani & Beal, 2000), we can derive the modified update
equations for the variables in the model. Due to space
constraints, we omit the derivation, and only summa-
rize the update equations for the mean of b and α:

〈bm〉(n+1)
=

(∑N
i=1 fm(xi)

2

∑N
i=1 fm(xi)2 + ψzm 〈αm〉

)
〈bm〉(n)

+

ψzm
∑N
i=1

(
yi − 〈b〉(n)T

f(xi)

)
fm(xi)

s
(∑N

i=1 fm(xi)2 + ψzm 〈αm〉
) (12)

〈αm〉 =
2aα + 1

2bα + 〈b2m〉
(13)

This formulation results in a regression solution which
regularizes over the number of retained input dimen-
sions in the final regression vector, similar to Auto-
matic Relevance Determination (ARD) (Neal, 1994).

3.2. Regularization over Regression Vector
Length (Bayesian Backfitting-II)

Alternatively, we may choose to use a single precision
variable over the entire regression vector b:

p(b|α) =
(α

2π

)d/2
exp

{
−α

2
bTb

}

p(α) =
baαα

Γ(aα)
α(aα−1) exp (−bαα)

(14)

which results in following update equations:

〈bm〉(n+1)
=

(∑N
i=1 fm(xi)

2

∑N
i=1 fm(xi)2 + ψzm 〈α〉

)
〈bm〉(n)

+

ψzm
∑N
i=1

(
yi − 〈b〉(n)T

f(xi)

)
fm(xi)

s
(∑N

i=1 fm(xi)2 + ψzm 〈α〉
) (15)

〈α〉 =
2aα + d

2bα + 〈‖b‖2〉 (16)

This formulation results in a regression solution which
regularizes over the length of the regression vector b.
This is similar in operation to shrinkage methods such
as Ridge Regression which favor minimum-norm solu-
tions from the solution space.

Comparing Eqs. (12) and (15) with Eq. (4), we see that
in the absence of any correlation between the mth in-
put and the residual error, the first term in Eqs. (12)
and (15) causes the expected value 〈bm〉 to decay with
each iteration, thus providing the required regulariza-
tion. It is important to note that the Bayesian exten-
sions do not increase the computational complexity of
the algorithm beyond O(d).

3.3. Comparison with Ridge Regression

We evaluated both versions of Bayesian Backfitting
against Ridge Regression on two sets of problems. In
each set we considered the special case of fm(xi) =
xim, i.e., an OLS problem.

3.3.1. Experiment Set I

The first set of experiments was designed to test the
performance of these algorithms on datasets which had

a large number of correlated (redundant) inputs. Each
dataset consisted of N points of 50-dimensional input
data and 1-dimensional output data, generated in the
following manner:

1. Generate N normally distributed vectors of di-
mensionality di ≤ 50.

2. Generate output data using a random di-
dimensional regression vector (bm ∼ N (0, 100)).
Add Gaussian noise to output data (signal-to-
noise SNR=50).

3. Pad the input data with 50− di zero dimensions,
and rotate the padded input by a random 50-
dimensional rotation matrix. This spreads the di
input dimensions across the entire 50-dimensional
space resulting in highly correlated inputs.

100 datasets from each of 3 categories of (di, N) were
generated. The first, (50,1000), was a fully constrained
regression problem. The second, (5,1000), was ill-
conditioned with an intrinsic input dimensionality of
just 5. The third, (5,20), was severely undercon-
strained with just 20 data points from an intrinsic di-
mensionality of 5, rotated into a 50-dimensional space.
For each dataset, a noise-free test set of 1000 points
was generated with the same parameters. In all exper-
iments, the ridge parameter λ in Ridge Regression was
optimized using a line search on the mean squared er-
ror obtained on these test sets (not used in training).
The Bayesian Backfitting methods had no access to
the test set until evaluation.

Figure 3. Normalized MSE results on test set

Fig. 3 summarizes the results. The normalized MSE
of the three algorithms is statistically indistinguishable
on all three categories of problems. It should be noted
that for the second and third dataset categories —
(5,1000) and (5,20) — Bayesian Backfitting-I correctly
retained only 5 predictor dimensions for each dataset,
indicating a correct regularization of the number of
input dimensions required to predict the output.

Exp. I mean # of iterations
category B. Backfitting-I B. Backfitting-II
(50,1000) 242.98 165.53
(5,1000) 173.30 103.72
(5,20) 93.69 43.11

Table 1. Mean # of iterations reqd. for 95% ridge regres-
sion accuracy

We also examined the number of O(d) (where d = 50)
Bayesian Backfitting cycles required to reach 95% of
the accuracy of ridge regression. Comparing the typ-
ical O(d3) computational complexity of matrix inver-
sion — d3 = 502d = 2500d in our tests — with the
results in Table 1, it is apparent that Bayesian Backfit-
ting is well suited to applications that quickly require a
good approximate solution, but 100% accuracy is not
of immediate importance. Such is the case in many
large scale probabilistic inference systems where many
parameters are optimized simultaneously, such that a
complete maximization for individual parameter es-
timation is often useless due to other non-converged
variables. It should also be noted that the expensive
line search of Ridge Regression to find the appropriate
value for the regularizing constant λ makes it particu-
larly expensive for high dimensional datasets.

3.3.2. Experiment Set II

The second set of experiments tested the algorithms
on datasets which had a large number of irrelevent in-
puts. The data generation process is identical to that
in Sec. 3.3.1, except for step 3. Instead of padding
with zero dimensions, the input data is padded with
an uncorrelated Gaussian signal at 1/10th the stan-
dard deviation of the relevant inputs. Also, the ro-
tation step is skipped, since we wish to determine if
the algorithms can ignore irrelevant dimensions, and
rotating the relevant inputs would spread them over
all dimensions.

Datasets from 2 categories of (di, N) are generated.
The first (5,1000), contains 1000 data points with
5 relevant inputs padded with 45 noise dimensions.
The second (5,20) is underconstrained and has only
20 datapoints. As shown in the last two columns of
Fig. 3, Bayesian Backfitting-I performs significantly
better than the other two methods due to its ability
to regularize each input dimension independently and
eliminate irrelevant inputs.

3.4. Very High Dimensional Regression

To demonstrate the capability of Bayesian Backfitting
to operate robustly in very high-dimensional spaces,
we created a training set of 1000 data points in a man-

ner similar to that in Sec. 3.3.1 for category (5,1000),
only in this case, the regression vector is a known sim-
ple transformation [1, 2, 3, 4, 5]

T
, and the input data

was padded with 99,995 alternating zero and irrelevant
dimensions for a total of 100,000 dimensions. The first
100 dimensions were then rotated by a random rota-
tion matrix.

0
0.01
0.02
0.03
0.04
0.05

1
2
3
4

M
ag

ni
tu

de

vector components

b(1) b(2) b(3) b(4) b(5) avg[b(i)]

6<=i<=100,000

Figure 4. Projection vector component magnitudes after
inverse rotation

After training with Bayesian Backfitting-II, the regres-
sion solution b was rotated back by the inverse of the
transformation used in the creation of the dataset.
Fig. 4 shows the magnitudes of the vector compo-
nents. As shown, the first 5 components have cor-
rectly estimated the [1, 2, 3, 4, 5]

T
transformation used

to generate the output. The projection components
corresponding to the remaining 99,995 dimensions con-
verged to extremely small values. The mean of these
values (along with their standard deviation) are plot-
ted as the 6th bar in the figure. The normalized
mean squared error after 10,000 updates of Bayesian
Backfitting-II was consistently about 0.0001 for 10
runs of the algorithm measured on a noiseless test set.

3.5. Performance on a Chemometrics Dataset

As the previous section shows, backfitting performs
extremely well on severely underconstrained, high-
dimensional datasets. One typical example is the
estimation of concentrations of substances based on
their near infra-red (NIR) absorption spectra (Frank
& Friedman, 1993). The input variables are the spec-
tral responses at various wavelengths (typically several
hundred in number), while the number of calibration
solutions (data points) is much smaller (< 100).

The following dataset is a calibration set that aims
to estimate the moisture content in a sample of corn.
The input data is 700 dimensional while the number
of samples for which readings were taken is merely 80.

Table 2 shows the leave-one-out cross validation errors
obtained by running Ridge Regression, Bayesian Back-
fitting, and PLS (with 26 projection directions) on this
data set. The error measure for Bayesian Backfitting
was obtained by running the algorithms on each cross
validation training set (created by leaving out a sin-

Algorithm nMSE (CV)

Ridge Regression 3.009e-4
Bayesian Backfitting-I 3.015e-4
Bayesian Backfitting-II 3.230e-4
PLS-26 2.007e-4

Table 2. Summary of leave-one-out cross validation errors
on the chemometrics data set.

gle data point) until convergence (until the relative
change in the functional F (Q,θ) was less than 1e-5)
before testing on the left out data point. The Ridge
Regression parameters and the number of projection
directions for PLS were determined by leave-one-out
cross validation. The motivation for obtaining the
cross validation errors was to determine whether or
not this severly underconstrained problem would be
overfit by Bayesian Backfitting. From the results it is
clear that even though we are guaranteed to converge
to an OLS solution, Bayesian Backfitting is a numeri-
cally robust formulation that largely resists overfitting
the data in cases where the model is overparameterized
(when N � d), as expected from a Bayesian method.

4. Extensions of Bayesian Backfitting

4.1. Probabilistic Partial Least Squares

One of the most straightforward applications of
Bayesian Backfitting is in high-dimensional linear re-
gression, characterized by fm(x) = xm and m � 1.
Partial Least Squares regression (PLS) (Wold, 1975)
has found widespread application in this domain. The
essence of PLS is to find a projection direction u in the
input space of the regression that has high correlation
with the outputs, i.e., u = XTy, and, after project-
ing all input data onto this projection, i.e., s = Xu, to
perform a univariate regression between s and y. Mul-
tiple iterations using orthogonal projections, and the
residual error of the previous univariate fit as a target
variable may be required. We note that the iterative
determination of the parameters bm in Bayesian Back-
fitting corresponds to estimating a single optimal pro-
jection direction, not just a heuristic one, and the way
backfitting estimates this projection direction avoids
the need for an additional univariate regression along
the projection. From this perspective, Bayesian Back-
fitting can be seen as a probabilistic version of PLS,
although the it is not “partial” anymore but rather
complete, since it recovers the correct projection di-
rection with a single regression vector.

4.2. Growing Variational Mixture of Experts

Consider a mixture-of-experts regression, where the
prior probability of each expert’s contribution to

the regression is modeled by a Gaussian gating net-
work (Xu et al., 1995). For high-dimensional input
spaces, updating the regression parameters by ordi-
nary weighted least squares regression quickly becomes
a computational bottleneck, and is numerically brittle.
This situation can be remedied by using the Bayesian
Backfitting algorithm in each of the experts. Exploit-
ing the full power of probabilistic inference, we will
also automatically select the number of mixture com-
ponents K by growing K based on Bayesian model
comparison.

Within the locality of each mixture component, we
hypothesize the existence of two “child” components.
We place a joint Normal-Wishart prior over the mean
µ and precision B of each child-component’s Gaussian
gating network. Each data point within the locality of
the parent component is assigned a binomial variable
ξi, which decides which child-component the point be-
longs to. The probability parameter π of the binomial
distribution is given a Beta distribution prior.

xi|ξim = 1,µm,Bm ∼ N
(
µm,B

−1
m

)

µm|Bm, α0 ∼ N
(
0,B−1

m /α0

)

Bm|ν,S ∼Wishartν (Bm; S)

p(ξi1 = 1) = π; p(ξi2 = 1) = (1− π)

π ∼ Beta (π;u1, u2)

These distributions are in addition to the Bayesian
regularizing priors of Eqs. (11) and (14) over each
of the backfitting experts. Computing the true evi-
dence requires integration over all the model parame-
ters — an analytically infeasable task. Using a facto-
rial variational approximation, we can derive an EM-
like algorithm to maximize a lower bound to the true
model evidence. During this maximization process, if
both child-components survive in maximizing the lo-
cal evidence, they replace the parent model, effectively
“growing” the overall number of mixture components
by one. The algorithm terminates when the local evi-
dence within each component supports one model in-
stead of two.

Between the splitting of individual components, we
perform a similar variational evidence maximization
on the collection of all K components. This allows
components to die away if a split based on local evi-
dence caused the overall model evidence to decrease.
This results in a method similar to the one used by
Ghahramani and Beal in the context of variational fac-
tor analyzers (Ghahramani & Beal, 2000), except that
their method for selecting a component to split was
slightly heuristic, while our evidence based approach
guarantees that we do not locally overfit.

We tested this algorithm on 20 “cross” datasets

−1

0

1

−1

−0.5

0

0.5

1
0

0.5

1

(a) Original function

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

(b) Estimated function

(avg. NMSE=0.0525)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) Component
locations

Figure 5. Growing mixtures of Bayesian Backfitters

shown in Fig. 5(a). Each dataset consisted of
2000 2-dimensional input data points (x1, x2), ran-
domly generated in the interval [-1,1]. The
output was generated using the function y =

max
[
e−10x2

1 , e−50x2
2 , e−5(x2

1+x2
2)
]

along with additive

Gaussian noise (SNR=50). Subsequently, the input
was augmented with 18 zero dimensions, and rotated
by a random rotation matrix into a 20-dimensional
space. The algorithm was initialized with 5 mixture
components, which grew to an average of 14.95 on con-
vergence. Figs. 5(b) and 5(c) show the learned func-
tion and the typical final configuration of the model
components after rotating back to a 2-dimensional in-
put space. The configuration of experts is intuitively
reasonable, demonstrating the feasibility of inserting
Bayesian Backfitting into nonlinear learning systems.

4.3. Probabilistic Backfitting in Locally
Weighted Regression

Bayesian Backfitting is also applicable in a non-
parametric locally weighted learning (LWL) scenario
for function approximation with locally linear mod-
els (Vijayakumar & Schaal, 2000). Here, each
training data point is assigned a weight wk,i =
exp(−0.5(xi − ck)TDk(xi − ck)) such that the locally
linear model is obtained from a weighted regression
analysis βk = (XTWX)−1XWy. The computation-
ally expensive linear regression model in LWL can
be replaced by Bayesian Backfitting by employing a

-1

0

1

-1

0

1

0

0.5

1

(a) Estimated func-
tion

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

(b) Component lo-
cations

Figure 6. Function estimation with LWL

heteroscedastic backfitting model, in which zim|xi ∼
N (bmfm(xi), ψzm/wi) and yi|zi ∼ N

(
1T zi, ψy/wi

)
.

From a Bayesian standpoint, we can interpret the
weighting to signify that a datapoint with very low
weight has correspondingly high noise variance, such
that it has little influence on the model estimation. We
can derive an EM backfitting algorithm for this model
in much the same manner as that done in Sec. 2.1.
In addition, the decoupling of the input dimensions
allows us to perform efficient adjustment of the dis-
tance metric Dk for the Gaussian kernels along each
of the input dimensions using stochastic leave-one-out
cross-validation (Vijayakumar & Schaal, 2000). Fig. 6
demonstrates function approximation results and au-
tomatic kernel shaping for the same datasets as in
the previous section. Again, very efficient computa-
tional complexity and robust numerical performance
was achieved due to Bayesian Backfitting.

5. Discussion

Starting with the idea that, with the introduction of
hidden variables, we can reduce the computational
complexity of statistical inference in the fan-ins of
graphical models, we have developed a probablilistic
version of backfitting — a very general framework for
estimating generalized additive models. Although the
Probabilistic and Bayesian Backfitting methods are
iterative, our experimental evaluations show that in
practice, they require rather few iterations to achieve
approximately accurate solutions — especially in ill-
conditioned, underconstrained datasets. This makes
them well suited to be inserted into various statisti-
cal learning frameworks. While the original backfit-
ting algorithm within the framework of nonparamet-
ric statistics did not make any assumptions about the
distribution of the variables in the model, Bayesian
Backfitting required to be explicit about distributions,
chosen to be Gaussian as in many other probabilistic
derivations. Ongoing evaluations in application areas
of robot control and human-computer interaction will
provide insights into the potential impacts of such as-
sumptions.

Acknowledgements

This work was made possible by support from the
US National Science Foundation (Awards 9710312 and
0082995), an AFOSR grant to Barron Associates, the
ATR Human Information Science Laboratories, and
the ERATO Kawato Dynamic Brain Project funded
by the Japan Science and Technology Corporation.

References

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally
weighted learning. Artificial Intelligence Review, 11, 11–
73.

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression
diagnostics: Identifying influential data and sources of
collinearity. New York: Wiley.

Frank, I. E., & Friedman, J. H. (1993). A statistical view
of some chemometrics regression tools. Technometrics,
35, 109–135.

Ghahramani, Z., & Beal, M. J. (2000). Variational in-
ference for Bayesian mixtures of factor analysers. Ad-
vances in Neural Information Processing Systems (pp.
509–514). MIT Press.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized ad-
ditive models. No. 43 in Monographs on Statistics and
Applied Probability. Chapman & Hall.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mix-
tures of experts and the EM algorithm. Neural Compu-
tation, 6, 181–214.

Neal, R. M. (1994). Bayesian learning for neural networks.
Doctoral dissertation, Dept. of Computer Science, Uni-
versity of Toronto.

Poggio, R., & Girosi, F. (1990). Regularization algorithms
for learning that are equivalent to multilayer networks.
Science, 247, 213–225.

Schaal, S., Vijayakumar, S., & Atkeson, C. G. (1998). Lo-
cal dimensionality reduction. Advances in Neural In-
formation Processing Systems 10 (pp. 633–639). Cam-
bridge, MA: MIT Press.

Vijayakumar, S., & Schaal, S. (2000). An O(n) algorithm
for incremental real time learning in high dimensional
space. Proceedings of the Seventeenth International Con-
ference on Machine Learning (ICML2000) (pp. 1079–
1086). Stanford, CA.

Wold, H. (1975). Soft modeling by latent variables: The
nonlinear iterative partial least squares approach. In
J. Gani (Ed.), Perspectives in probability and statistics,
papers in honour of M. S. Bartlett, 520–540. London:
Academic Press.

Xu, L., Jordan, M. I., & Hinton, G. E. (1995). An al-
ternative model for mixtures of experts. Advances in
Neural Information Processing Systems (pp. 633–640).
Cambridge, MA: MIT Press.

