
In Proc. of Tenth International Conference on AI in Education, May 2001.

An Automated Lab Instructor for Simulated
Science Experiments

Aaron D’Souza,1 Jeff Rickel,1 Bruno Herreros,2 and W. Lewis Johnson1
1 USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA, 90292

adsouza@usc.edu, rickel@isi.edu, johnson@isi.edu
2 USC Department of Chemistry, Los Angeles, CA, 90089-1062

herreros@chem1.usc.edu

Abstract. Virtual laboratories, which allow students to interactively run simulated ex-
periments, are a powerful way to teach students about science. To provide guidance to
students working with virtual labs, we developed an automated lab instructor (ALI).
ALI has a representation of the key relationships in the simulation model that the
student should learn, and it uses this knowledge to interleave its teaching opportunis-
tically with the student’s own discovery learning. Specifically, it can recognize learn-
ing opportunities in a student’s experiments, test the student’s resulting understanding,
and gently guide the student towards these learning opportunities when necessary. ALI
has a simple yet general ontology for representing knowledge of simulation models,
as well as domain-independent tutorial capabilities derived from this ontology, so it
can be connected to a new virtual lab with relatively little effort.

1 Introduction

Virtual laboratories are a powerful way to teach students about science. A typical virtual
lab provides simulation models of physical phenomena (e.g., the kinetic molecular theory of
gases), animations that allow students to visualize simulations (e.g., bouncing balls in a con-
tainer representing gas molecules), and a user interface that allows students to run simulated
experiments (e.g., vary temperature to study the resulting effect on the gas). As with a phys-
ical laboratory, students learn about scientific methods by playing the role of a scientist, and
they learn the principles governing phenomena through their own experience, rather than by
being told. Moreover, virtual labs nicely complement physical labs. Students can study phe-
nomena that occur on too large or small a spatial or time scale to permit physical experiments.
Their ability to visualize phenomena that would otherwise be unobservable (e.g., individual
gas molecules) helps them form useful mental models. Finally, since they only need a com-
puter, rather than physical lab equipment, they can run experiments practically anywhere and
anytime.

Virtual labs are becoming widely available. New science textbooks increasingly come
with such software, and many virtual labs are available for free on the Internet. However,
while these labs allow students to interactively run experiments, few provide any guidance.
Without guidance, students may run experiments of little instructional value, and they may
fail to draw appropriate conclusions from successful experiments. However, requiring the
presence of a human lab instructor would eliminate the ability of students to run experiments



anywhere and anytime, while dictating an exact sequence of experiments for students to run
and questions for them to answer would prevent them from using their own interests and
questions to drive their experiments.

To address these issues, we developed an automated lab instructor (ALI) that provides
flexible guidance to students interacting with virtual labs. ALI has a representation of the
key relationships in the simulation model that the student should learn, and it is capable of
explaining these relationships as well as testing the student’s understanding. The central prin-
ciple behind our approach is that ALI should teach these relationships in the context of the
student’s own experiments; ALI interleaves its teaching opportunistically with the student’s
own discovery learning. To support such a tutorial style, ALI must recognize learning op-
portunities in a student’s experiments, test the student’s resulting understanding, and gently
guide the student towards these learning opportunities when necessary.

While designing such a tutor for a particular virtual lab is challenging in itself, our goal
is more general: it should be easy to connect ALI to a new virtual lab and to give ALI the
knowledge it needs to interact with students using that lab. To achieve this goal, ALI has
a simple yet general ontology for representing knowledge of simulation models, as well as
domain-independent tutorial capabilities derived from this ontology. In addition to providing
such knowledge to ALI, a course author need only define a few simple interface functions to
connect ALI to an existing virtual lab.

2 Related Work

Our work integrates tutorial dialogue for scientific inquiry with interactive simulation. The
seminal research in the first area, tutorial dialogue for scientific inquiry, was performed by
Stevens, Collins, and Goldin [1, 16]. They introduced several key representations for knowl-
edge of physical phenomena; our knowledge representation is based on Qualitative Process
Theory [2], which is a direct intellectual descendant of their work. However, like other simi-
lar work (e.g., [5]), their approach is based solely on a natural language dialogue between the
tutor and student; it does not incorporate the use of interactive simulations that can provide
an experimental testbed for students, which is a central element of our approach.

In contrast, most tutoring systems that have exploited interactive simulations have sup-
ported little or no dialogue with students to guide their scientific inquiry. STEAMER [7]
introduced the notion of interactive, inspectable simulations to help students build mental
models of physical phenomena. We share that goal but seek to combine graphical simula-
tions with a tutorial dialogue in which the student and computer tutor can investigate simula-
tion models together. More recently, Forbus and Falkenhainer developed methods for “self-
explanatory simulators” [3]. Such simulators combine quantitative simulation with knowl-
edge represented using Qualitative Process Theory to allow the computer to provide a run-
ning commentary on what is happening during the simulation, and to answer questions about
the simulation afterwards. This is a powerful foundation for intelligent tutoring, but, unlike
ALI, self-explanatory simulators have no explicit pedagogical objectives to drive the dia-
logue. Recent work has explored an ambitious combination of such simulators with tutoring
components for scientific inquiry [8], but only as a proof of concept; no general integration
has been done. Other interactive simulators have been integrated with a tutorial dialogue (e.g.,
[11, 13, 18]), but those dialogues focus on teaching procedures for operating and maintaining
physical systems, not scientific inquiry for understanding them.



Several other recent systems are exploring tutorial goals similar to ours, but they appear to
lack the generality and reusability we are targeting because they are hard-coded for particular
domains rather than exploiting more general knowledge representations as we propose. ISIS
[9] provides a simulated ecosystem in which students can run experiments, as well as a tutor
that offers advice on formulating research questions, generating hypotheses, designing and
running experiments, and drawing appropriate conclusions. LUCID [17] provides interac-
tive simulations with which chemistry students can explore experimental questions and solve
problems. Their focus is complementary to ours; while we focus on tutorial dialogue with
a computer tutor, they focus on supporting teams of students working together to provide
feedback to one another.

3 Learning Environment

At the heart of our learning environment is a simulation of some physical phenomena. A
simulation is characterized by a set of independent variables and a set of dependent variables.
Independent variables are those that the student is free to modify, while dependent variables
are ones whose values are computed from the independent variables by the simulation. The
goal of our learning environment is to have the student learn the relationships between the
independent and dependent variables by running experiments in the virtual laboratory. With
each experiment, the student initializes the independent variables, runs the simulation, and
observes the effect on the dependent variables.

The learning environment runs as a Java applet in a web browser, as shown in figure 1.
The upper section of the GUI allows the student to control the simulation, including starting
and stopping the simulation, changing the independent variables, and viewing the values of
dependent variables.

Figure 1: The learning environment as seen by the student.



The frame to the right contains an animation that is optionally supplied by the simulation
author. This provides any appropriate visual cues about the operation of the simulation. In the
example in figure 1, the animation shows the motions of gas molecules within a container,
and a histogram of the molecules’ speeds.

TheAgent Interactionsection of the GUI supports ALI’s dialogue with the student. The
Speech Areadisplays ALI’s comments. As new text appears in the speech area, old text is
moved into theSpeech Historyarea so that the student always has access to ALI’s prior com-
ments for reference. To the right of the speech area is aQuiz Panelin which ALI occasionally
asks multiple-choice questions to test the student’s understanding.

Because ALI may introduce terms that the student is not familiar with, the student should
be able to ask ALI to explain them at any point during the interaction. To the right of the
speech history area is a list of terms that the student can select and ask ALI to describe. This
list is updated whenever ALI introduces a new term.

4 Creating a New Virtual Laboratory

Figure 2 shows the architecture of our learning environment. There are three components:
ALI, ALI’s domain-independent interface manager, and a domain-specific simulator. A course
author can connect ALI to a new simulator in two simple steps: (1) write a set of methods
that provide the interface between ALI’s interface manager and the simulator, as described
in section 4.1; and (2) describe the simulation domain using ALI’s knowledge specification
language, as described in section 4.2.

Figure 2: General architecture of the learning environment.

4.1 Interface manager API

The interface manager creates and manages the student’s GUI, and it connects the simulator
to ALI. It provides a simple interface to the simulator, including methods that the interface
manager invokes, which must be implemented by the simulator, and methods provided by the
interface manager, which are invoked by the simulator. The simulator must implement three
methods:getSimulationVariableInfo ,startSimulation , andstopSimula-
tion . ThegetSimulationVariableInfo method, which is called when ALI is ini-
tialized, should return descriptions of each of the independent and dependent variables. The
interface manager uses this information to maintain an internal state of the simulation and
to automatically generate the GUI through which the student runs experiments. The inter-
face manager informs the simulator when the student clicks on “Start simulation” or “Stop



simulation” by calling thestartSimulation or stopSimulation methods, respec-
tively. ThestartSimulation method can request the current values of the independent
variables from the interface manager.

Given the values of the independent variables, the simulator computes the resulting be-
havior of the system being simulated. It can either model a dynamic process in which the
system reaches equilibrium over a series of timesteps, or perform a static computation of
the final system state. As the simulation updates its variables, the new values are communi-
cated to ALI using an event-generation interface provided by the interface manager. At each
timestep in the simulation, it generates aSimulationVariableEvent to notify the in-
terface manager of updates. A single event can encapsulate the updates to all the variables in
this timestep, and thus suffices to convey the updated state of the entire simulation.

4.2 Knowledge specification language

To provide guidance to the student, ALI must know the learning objectives of the simulation.
Our goal in designing ALI was to help students acquire a basic qualitative understanding of
physical phenomena. Students often develop the ability to solve the quantitative equations
governing physical phenomena without acquiring such a basic understanding. Virtual labs
can complement lectures and textbook exercises by helping students to acquire better mental
models of the phenomena behind the equations. Thus, our goal was to design a knowledge
specification language with which a course author can easily represent the qualitative un-
derstanding of a simulation model that students are expected to acquire through the virtual
lab.

Our language is based on the influences among state variables in a simulation model. Such
a representation has been used by human modelers in a wide variety of domains [4, 12, 15],
and it has also received considerable attention in research on automated reasoning about
physical systems [2, 14]. The details of our language are drawn from Qualitative Process
Theory (QPT) [2], which provides a qualitative abstraction of differential equations. The
current implementation supports QPT’s functional influences among state variables, Q+ and
Q-, defined as follows:

x
Q+
! y , y = f(x; : : : ) and

@y

@x
> 0

x
Q�
! y , y = f(x; : : : ) and

@y

@x
< 0

This form of modeling ignores the exact functional relationship between the two variables
and simply specifies the direction of change that should result in one variable as a result of
a change in the other (when all other variables are held constant). ALI does not yet support
QPT’s differential influences, I+ and I-, which model the influence of one variable on the rate
of change of another variable. Thus, our current knowledge specification language can model
the steady state (equilibrium) relationships between independent and dependent variables, but
not the transient (dynamic) relationships.

Course authors provide ALI’s knowledge in a text file that uses structured definitions for
each of the items in the knowledge base. To illustrate each type of item, we will use examples
from an implemented simulation that teaches the kinetic molecular theory of gases.

Entity {name: gas; description: The gas molecules in the container;}



An entity in the simulation is any object that can possess properties. Entities are used as
placeholders that tie the other knowledge base objects such as properties and influences into
a cohesive whole. The names of entities are also placed in the “Describe” panel of the GUI
so that students can get descriptions of them.

Property {name: number of molecules; ofEntity: gas;
description: The number of gas molecules in the container;}

Property {name: collision frequency; ofEntity: gas;
description: The rate at which the molecules collide with the

container walls;}
Property {name: pressure; ofEntity: gas;

description: The force exerted by the gas on the container walls;}

Variables in the simulation model are represented as properties of entities. Properties do
not necessarily have to correspond to explicit variables in the simulation. For example, the
second property in the above specification corresponds to a variable that is not explicitly com-
puted in the simulation engine, but is simply used to illustrate (as described below) a lower-
level influence between the number of molecules in the system and the collision frequency
of the molecules with the container walls, which explains the high-level relation between the
number of molecules and observed pressure.

Relation {name: nMolecules_pressure; type: Q+;
properties: number of molecules, pressure;
description: The pressure is directly related to the quantity of gas

in the container. Hence it increases when the number of
molecules in the container increase, and vice versa;

explanation: nMolecules_freq, freq_pressure;}

Relations represent the high-level influences in the simulation. In this example, a posi-
tive influence exists between the independent variablenumber of molecules and the
dependent variablepressure . Theproperties field lists the pair of variables involved
in the influence. Thetype field specifies the type of influence, currently Q+ or Q-. The
definition also implicitly assumes causality from the first property to the second, as in QPT.

To understand a physical phenomenon, students must learn not only how it behaves (rep-
resented by the high-level influences) but also why it behaves that way. Typically, a high-level
influence between two variables can be explained by a more-detailed chain of influences con-
necting those variables. Theexplanation field specifies a list of lower-level influences
that provide such an explanation chain. These low-level influences are calledAtomicRe-
lations .

AtomicRelation {name: nMolecules_freq; type: Q+;
properties: number of molecules, collision frequency;
description: The number of collisions of gas molecules with the

container is proportional to the number of gas
molecules present. Hence an increase or decrease in
the number of molecules results in a corresponding
increase or decrease in the frequency of collisions;}

AtomicRelation {name: freq_pressure; type: Q+;
properties: collision frequency, pressure;
description: Collisions of the gas molecules with the container

walls result in the pressure exerted by the
gas. Hence an increase in the frequency of these
collisions increases the pressure and vice versa;}



AtomicRelation structures are very similar to theRelation structures discussed
above, but lack theexplanation fields. These knowledge elements form the building
blocks of the explanation lists ofRelation objects. In this example, the twoAtomi-
cRelation objects form the explanation list for thenMolecules pressure influence.

5 ALI

5.1 Overview

The interface manager tracks changes in the simulation at every timestep, but ALI reasons
about the state of the simulation at only two points: the start and end of a student’s experi-
ment. The decision to have the reasoning mechanism triggered at these two points was made
for efficiency reasons; having ALI reason about the operation at every timestep was wasteful,
and could produce erroneous decisions if the system being simulated had not yet converged to
a stable state. Having the simulation send updates at every timestep, however, is necessary for
the interface manager to display updated variable values in the GUI. Also, other data analysis
utilities could be integrated into the interface manager, such as graphing and statistical anal-
ysis, and these would require a complete record of variable values. An additional benefit of
tracking state changes at every timestep is that we could use such information to calculate the
rate of change of variables, which would be necessary to model QPT’s I+ and I- influences.

ALI’s reasoning about influences spans across two consecutive runs of the simulation.
This allows a change in independent variables and its influence on the system to be de-
termined by comparing it against the previous time the simulation was run. A student that
changes a single independent variable at a time can isolate the effect of that variable on the
dependent variables. If a student changes multiple independent variables at once, ALI will
use the opportunity to provide instruction in the scientific method, and caution the student
against such modifications.

To simplify the discussion, the next two subsections will assume that ALI’s model of
the student is in its initial state (i.e., the student has not yet begun experimenting with the
simulation). A discussion of the effect of the student model on ALI’s interaction is deferred
to section 5.4.

5.2 Low-level reasoning

Each influence in the knowledge base represents a learning objective. The task of the low-
level reasoner is to identify the instances when an influence is illustrated during the student’s
experiments. These instances are learning opportunities that ALI exploits to engage the stu-
dent in a dialogue about the influence. When a simulation is stopped, the low-level reasoner
scans the list of influences and, for each influence, determines whether its independent and
dependent variables have changed in a manner consistent with its influence type (Q+ or Q-)
since the last time the simulation was stopped. If so, the low-level reasoner sends the high-
level reasoner a “knowledge event” notifying it of the specific influence that was illustrated.

The low-level reasoner also scans for anomalous changes in dependent variables, such as a
pressure value that increased in response to a decrease in temperature, when in fact it should
have decreased according to the influence in the knowledge specification. Such anomalous



readings may confuse the student, and are hence reported to the high-level reasoner so that
ALI may comment on them.

5.3 High-level reasoning

The high-level reasoner determines ALI’s behavior as a function of the student model (see
section 5.4) and the knowledge events generated by the low-level reasoner. This phase of
reasoning uses the knowledge base to construct an interaction based on the current event. Let
us take a simple example to illustrate the manner in which such interactions are created.

Assume that as the student experiments with our gas simulation, ALI receives an event
indicating that the gas pressure increased as a result of the student increasing the number of
molecules in the system. By virtue of its existence in the knowledge base, this influence is
one of the learning objectives of the simulation.

To ensure that the student noticed this learning opportunity, ALI will generate a quiz. The
quiz asks the student if he/she noticed the effect on pressure that resulted from the change in
the number of molecules. The quiz does not have to be authored; ALI has quiz templates into
which the names of appropriate properties are added from the knowledge base to construct
the complete quiz. Quizzes are multiple-choice questions of the following form:

Did you notice what happened to pressure when the number of molecules was in-
creased? (pressure increased, pressure decreased, did not notice)

If the student answers incorrectly or did not notice the change, ALI will suggest that the
student try again:

Why don’t you try increasing the number of molecules again, and this time keep a
close eye on pressure.

Otherwise, since this is the first time that the student has encountered this influence, ALI will
describe the reason for this observed effect on pressure. This description is taken from the
knowledge base element corresponding to the influence:

Very good! The pressure is directly related to the quantity of gas in the container.
Hence it increases when the number of molecules in the container increases. Now
let’s see why this happens: : :

After describing the influence, ALI will engage the student in a dialogue about its un-
derlying causes. It traverses each link in the explanation chain for this influence, and asks
the student a question about each link in turn. For our example influence, the two low-level
relation links in the explanation chain are the influence of the number of molecules on their
collision frequency with the container walls, and the influence of this collision frequency
on the perceived pressure of the gas. Thus, for the first link, ALI would pose the following
question:

What do you think happened to the collision frequency when the number of molecules
was increased? (collision frequency increased, collision frequency decreased, no change)

At the same time, ALI knows that the term “collision frequency” is new and places it in the
list of describable elements in case the student needs to have it elaborated. Next, ALI gives
the student feedback on his/her answer (“yes” or “no”) followed by a textual description of
the influence. For example, if the student answered the above quiz incorrectly, ALI would
respond as follows:



No. The number of collisions of gas molecules with the container is proportional to
the number of gas molecules present. Hence an increase or decrease in the number of
molecules results in a corresponding increase or decrease in the frequency of colli-
sions.

Regardless of the student’s answer, ALI will proceed through the remaining explanation
elements:

What do you think happens to pressure when the collision frequency increases? (pres-
sure increases, pressure decreases, no change)

After discussing each link in the explanation chain, ALI summarizes all the low-level
influences in the context of the high-level influence being explained:

In summary: : :

� An increase in the number of molecules increases collision frequency

� An increase in collision frequency increases pressure

Hence an increase in the number of molecules increases pressure. Why don’t you try
running some more experiments: : :

Besides identifying opportunities for instruction, ALI also keeps track of how productive
the student’s actions are in terms of uncovering situations for learning new relations. If the
student has run several experiments without encountering any new learning opportunities,
ALI will suggest an experiment based on the learning objectives the student hasn’t mastered.
For example, after the student has mastered the relationship between the number of molecules
and pressure, ALI will expect him to explore the relationship between temperature and pres-
sure. If the student doesn’t perform any experiments that demonstrate this influence, then
after a few experiments ALI will suggest one:

Why don’t you try increasing temperature?

5.4 Student Model

ALI keeps a record of the student’s presumed knowledge, for two reasons. First, ALI must
be able to recognize when the student has accomplished all the learning objectives for a
simulation, as well as guide the student towards unachieved learning objectives. Second, ALI
must distinguish between new information presented to the student and references to material
that has already been discussed; without making this distinction clear to students, they may
tune out repeated material and miss new information [10].

The student model is stored as an overlay model [6] that encapsulates the information
within the state of the knowledge base objects. The attributes are represented as simple flags:
whether or not the knowledge element has been encountered, whether it has been explained,
and whether the question relating to an influence was answered correctly or incorrectly. These
attributes could be serialized out to permanent storage as a model of each student, as well as
a record of past sessions which can be used to determine ALI’s level and nature of interaction
with the student during future sessions or with subsequent models.



As an example of the effect of the student model on ALI’s interaction, we return to our gas
law simulation. When our student encounters the influence between the number of molecules
and pressure again, ALI will check to see if this relation has been understood. If it hasn’t, then
ALI will proceed to go through the explanation chain again. This time, however, ALI will only
describe the reason for an influence if the student gets an answer wrong. If ALI described an
influence previously, and the student’s answer demonstrates a correct understanding of the
influence, there is no reason to repeat the description.

When walking a student through the explanation chain of a high-level influence, ALI may
encounter a low-level influence that was already described in the explanation of a different
high-level influence. In such a situation, ALI modifies its text to clearly identify the new
discussion as referring back to a prior discussion:

Do you remember what happens to pressure when the collision frequency is increased?

At the end of each explanation, ALI will check to see if all the learning objectives for the
simulation have been covered. If so, it will summarize the main learning objectives, and let
the student know that he/she has completed all of them. Otherwise, it will suggest that the
student continue running further experiments.

6 Evaluation

We conducted a small, formative evaluation to assess ALI’s usability and effectiveness. Six
students from a freshman chemistry course at USC filled out a short survey on their back-
ground, took a short pre-test on the kinetic molecular theory of gases, interacted with ALI for
15-30 minutes, and then took a post-test identical to the pre-test and filled out a questionnaire
on ALI. They were given no instructions on using ALI except that ALI would tell them when
they were done. After filling out the questionnaire, we discussed their opinions with them.
Their pre- and post-tests were graded by the third author of this paper, who holds a Ph.D. in
chemistry.

Although no strong conclusions can be drawn from such a small study, it suggests that
ALI is easy to use and does improve students’ understanding. All the students were able to
use ALI successfully without any human guidance, and they all rated ALI as easy to use.
(According to the questionnaire, all of them use computers frequently for a variety of tasks,
so we cannot draw conclusions about ALI’s usability for less computer-literate students.)
The answers on the pre-tests indicated that students already had a basic understanding of the
kinetic molecular theory of gases (they had begun covering it in class earlier in the week),
so there were few substantial improvements on the post-test. Nonetheless, the answers on
the pre-tests tended to be more intuitive and mechanistic, while the answers on the post-
test focused more on the relations between independent and dependent variables and were
generally more accurate. Ideally, we would prefer that the relational perspective augment,
rather than replace, the mechanistic view, which suggests that ALI should engage the students
in more dialogue to relate the variables and relations to the visual aspects of the animation.
This is an important area for future study, since it lies at the heart of combining tutorial
dialogue with graphical simulations.

To test the generality of ALI, we evaluated additional science simulations developed by
California State University, to assess the ease of applying ALI to them. We chose one sim-
ulation in particular for a trial integration: EvolutionLab, which simulates the evolution of



finches on desert islands in response to changes in environmental conditions. We found that
a variety of equilibrium relationships in EvolutionLab could be modeled with ALI’s ontol-
ogy. In addition, other relationships could be modeled if we extended ALI to include QPT’s
differential influences (discussed in section 4.2) and its “views,” which would allow ALI
to recognize qualitatively important state changes. While equilibrium models form a large,
important class of simulations, incorporating more of QPT into ALI to further increase its
generality is an important area for future work.

7 Conclusions

ALI provides guidance to students interacting with virtual labs. ALI’s interaction with a stu-
dent is driven by specific pedagogical goals, and its guidance is interleaved with the stu-
dent’s own discovery learning. These pedagogical goals are based on the qualitative influ-
ences within a physical system that the student should develop an intuition for. Our design
makes it easy to connect ALI to a new virtual lab and provide the knowledge that ALI needs
to interact with students. Thus, ALI makes it possible for students to learn about a wide range
of science topics through their own experiments, practically anywhere and anytime.

References

[1] Allan Collins and Albert L. Stevens. Goals and strategies of inquiry teachers. In R. Glaser, editor,Ad-
vances in Instructional Psychology, volume 2. Erlbaum Associates, Hillsdale, NJ, 1982.

[2] Kenneth D. Forbus. Qualitative process theory.Artificial Intelligence, 24:85–168, 1984.

[3] Kenneth D. Forbus. Using qualitative physics to create articulate educational software.IEEE Expert,
12(3), 1997.

[4] Jay W. Forrester.Principles of Systems. Wright-Allen Press, Cambridge, MA, 1968.

[5] Reva K. Freedman.Interaction of Discourse Planning, Instructional Planning and Dialogue Management
in an Interactive Tutoring System. PhD thesis, Northwestern University, 1996.

[6] Ira P. Goldstein. Overlays: A theory of modelling for computer-aided instruction. Artificial Intelligence
Laboratory Memo 495, Massachusetts Institute of Technology, Cambridge, MA, 1977.

[7] James D. Hollan, Edwin L. Hutchins, and Louis Weitzman. Steamer: An interactive inspectable
simulation-based training system.AI Magazine, 5(2):15–27, 1984.

[8] Kenneth R. Koedinger, Daniel D. Suthers, and Kenneth D. Forbus. Component-based construction of a
science learning space.International Journal of Artificial Intelligence in Education, 10:292–313, 1999.

[9] Thomas N. Meyer, Todd M. Miller, Kurt Steuck, and Monika Kretschmer. A multi-year large-scale field
study of a learner controlled intelligent tutoring system. InProceedings of the Ninth International Con-
ference on Artificial Intelligence in Education, pages 191–198. IOS Press, 1999.

[10] Johanna D. Moore. Making computer tutors more like humans.Journal of Artificial Intelligence in
Education, 7(2):181–214, 1996.

[11] A. Munro, M.C. Johnson, Q.A. Pizzini, D.S. Surmon, and D.M. Towne. Authoring simulation-centered
tutors with RIDES.International Journal of Artificial Intelligence in Education, 8:284–316, 1997.

[12] C.J. Puccia and R. Levins.Qualitative Modeling of Complex Systems. Harvard University Press, Cam-
bridge, MA, 1985.

[13] Jeff Rickel and W. Lewis Johnson. Animated agents for procedural training in virtual reality: Perception,
cognition, and motor control.Applied Artificial Intelligence, 13:343–382, 1999.



[14] Jeff Rickel and Bruce Porter. Automated modeling of complex systems to answer prediction questions.
Artificial Intelligence, 93:201–260, 1997.

[15] Nancy Roberts, David Andersen, Ralph Deal, Michael Garet, and William Shaffer.Introduction to Com-
puter Simulation. Addison-Wesley, Reading, MA, 1983.

[16] A. Stevens, A. Collins, and S. Goldin. Misconceptions in students’ understanding. In D. Sleeman and J.S.
Brown, editors,Intelligent Tutoring Systems, pages 13–24. Academic Press, 1982.

[17] Troy Wolfskill and David Hanson. LUCID: Computer-based activities for in-class team learning.
www.chem.sunysb.edu/hanson-foc/lucid.html.

[18] Beverly Woolf, Darrell Blegan, Johan H. Jansen, and Arie Verloop. Teaching a complex industrial process.
In Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86), pages 722–728, Los
Altos, CA, 1986. Morgan Kaufmann.


